搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究

李梦琪 张玉钧 何莹 尤坤 范博强 余冬琪 谢皓 雷博恩 李潇毅 刘建国 刘文清

引用本文:
Citation:

基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究

李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清

NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser

Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing
PDF
HTML
导出引用
  • 由于NH3在大气气溶胶化学中具有重要作用, 所以快速和精确反演NH3浓度对环境问题非常重要. 本文以9.05 μm的室温连续量子级联激光器(quantum cascade laser, QCL)作为光源, 采用波长扫描直接吸收可调谐二极管激光吸收光谱(tunable diode laser absorption spectroscopy, TDLAS)技术, 研究了QCL在1103.4 cm–1的光谱特性, 获得了激光器控制的温度电流与波长的关系. 设计了QCL二级温控的低压实验平台, 测量氨气在1103.4 cm–1处的6条混叠吸收线, 在降低压强的情况下谱线展宽变小, 使混叠光谱分离, 由此计算各条吸收线的线强, 进一步对测量不确定度进行分析. 针对混叠严重的光谱提出了低压分离单光谱精确反演气体浓度的方法, 并进行了实验验证. 通过与HITRAN数据库进行结果对比, 得出氨气在1103.4 cm–1的实验测量线强值与数据库偏差为2.71%—4.71%, 实验测量线强值的不确定度在2.42%—8.92%, 极低压条件下反演浓度与实际值的偏差在1%—3%.
    Due to the important role of NH3 in atmospheric aerosol chemistry, rapid and accurate inversion of ammonia concentration is very important for environmental issues. In this paper, a 9.05 μm continuous quantum cascade laser (QCL) is used as the light source at room temperature, and the scanned-wavelength direct-absorption tunable diode laser absorption spectroscopy (TDLAS) is used to study the spectral characteristics of the QCL at 1103.4 cm–1. A low-pressure experimental platform based on two-level temperature control was designed to measure the six aliasing absorption lines of ammonia at 1103.4 cm–1. The broadening of spectral line becomes smaller under the condition of reducing the pressure, and the aliasing spectra are separated. The line strength of each absorption line is calculated, and the measurement uncertainty is further analyzed. A method for accurate inversion of single-spectrum gas concentration by low-pressure separation was proposed for severely aliased spectra, and experimental verification was performed. By comparing the results with the HITRAN database, it is concluded that the experimental measured line strength of ammonia gas at 1103.4 cm–1 has a deviation from the database of . The uncertainty of the line intensity measurement is mainly related to the separation and extraction of aliasing absorbance, which is about 2.42%–8.92%. The deviation between the inversion concentration and the actual value under the condition of extreme low pressure is between 1% and 3%, while the calculated deviation of the line intensity value in the 2.71%–4.71% HITRAN database is about 3% to 5%. The results above indicate that the experimental data are reliable. The non-separative aliasing spectral line method is used to invert the concentration at normal pressure, and the low-pressure separated single spectral line method is used to invert the concentration at low pressure. The results of the two are compared. The analysis results show that the low-pressure separation single-spectrum spectral line inversion concentration value has smaller deviation and higher accuracy from the original concentration. The study of this method provides reference for future inversion of gas concentrations inversion in the atmospheric environment and other fields.
      通信作者: 张玉钧, yjzhang@aiofm.ac.cn
    • 基金项目: 国家级-国家自然科学基金青年项目(41805124)
      Corresponding author: Zhang Yu-Jun, yjzhang@aiofm.ac.cn
    [1]

    何莹 2017 博士学位论文(合肥: 中国科学技术大学)

    He Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [2]

    Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8792Google Scholar

    [3]

    Fowler D, Coyle M, Skiba U, Sutton M A, Voss M 2013 Philos. Trans. R. Soc. B-Biol. Sci. 368 0164

    [4]

    Vitousek P M, Menge D N L, Reed S C, Cleveland C C 2013 Philos. Trans. R.Soc. B-Biol. Sci. 368 0119

    [5]

    Bhattacharyya P, Roy K S, Neogi S, Adhya T K, Rao K S, Manna M C 2012 Soil Tillage Res. 124 119Google Scholar

    [6]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [7]

    Tao L, Sun K, Miller D J, Khan M A, Zondlo M A 2012 Opt. Lett. 37 1358Google Scholar

    [8]

    陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰 2013 物理学报 62 224206Google Scholar

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206Google Scholar

    [9]

    王立明, 张玉钧, 李宏斌, 周毅, 尤坤, 何莹, 刘文清 2012 中国光学快报 10 74

    Wang L M, Zhang Y J, Li H B, Zhou Y, You K, He Y, Liu W Q 2012 Chin. Opt. Lett. 10 74

    [10]

    Webber M E, Baer D S, Hanson R K 2001 Appl. Opt. 40 2031Google Scholar

    [11]

    Xu L H, Liu Z, Yakovlev 2004 Infrared Phys. Technol. 45 31Google Scholar

    [12]

    Jia H, Zhao W, Cai T 2009 J. Quant.Spectrosc.Radiat. Transfer 110 347Google Scholar

    [13]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffffries J B, Enns G M, Hanson R K 2016 J. Quant.Spectrosc.Radiat. Transfer 175 90Google Scholar

    [14]

    Romh J E, Cacciani P, Taher F 2016 J. Mol.Spectrosc. 326 122Google Scholar

    [15]

    Yang S, Li J, Wang R 2017 Applied Optics and Photonics China Beijing, China, October 24, 2017 p61

    [16]

    You K, Zhang Y J, Wang L M, Li H B, He Y 2013 Adv. Mater. Res. 760 84

    [17]

    鲁一冰, 刘文清, 张玉钧, 张恺, 何莹, 尤坤, 李潇毅, 刘国华, 唐七星, 范博强, 余冬琪, 李梦琪 2019 光谱学与光谱分析 39 2657

    Lu Y B, Liu W Q, Zhang Y J, Zhang K, He Y, You K, Li X Y, Liu G H, Tang Q X, Fan B Q, Yu D Q, Li M Q 2019 Spectrosc. Spect. Anal. 39 2657

    [18]

    费业泰 2015 误差理论与数据处理 (北京: 机械工业出版社) 第83页

    Fei Y T 2015 Error Theory and Data Processing (Beijing: Machinery Industry Press) p83 (in Chinese)

    [19]

    Xin Z 2005 Pap. Reg. Sci. 8418 3

    [20]

    PogányA, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar

    [21]

    GoldensteinC S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar

    [22]

    GoldensteinC S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100Google Scholar

    [23]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys.Sin. 66 054207Google Scholar

    [24]

    林洁丽 2001 博士学位论文 (武汉: 中国科学院研究生院 (武汉物理与数学研究所))

    Lin J L 2001 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics)) (in Chinese)

  • 图 1  QCL特性测量实验装置简图

    Fig. 1.  QCL characteristic measurement experimental device diagram.

    图 2  实验气路图

    Fig. 2.  Experimental gas path diagram.

    图 3  (a)未加二级温控时信号漂移(b)加二级温控后的信号稳定输出

    Fig. 3.  (a) Signal drift without secondary temperature control; (b) signal stable output after adding temperature control

    图 4  QCL的温度、电流与波长的关系

    Fig. 4.  The temperature, current and wavelength of QCL

    图 5  (a)常压下氨气特征吸收光谱信号(b)不同压力下氨气特征吸收光谱信号

    Fig. 5.  (a) Characteristic absorption spectrum signal of ammonia gas under normal pressure; (b) characteristic absorption spectrum signal of ammonia gas under different pressure

    图 6  不同压力下各条吸收线拟合结果

    Fig. 6.  Fitting results of various absorption lines under different pressures.

    图 7  实验测量的各吸收线的光谱线强值

    Fig. 7.  Spectral line strength values of each absorption line measured by experiment.

    表 1  NH3吸收线及主要参数

    Table 1.  NH3 absorption line and main parameters.

    同位素
    Isotopologue
    波数
    ν/cm–1
    线强
    S/(cm–1/(molecule cm–2))
    空气展宽
    γair/cm–1·atm–1
    自展宽
    γself/cm–1·atm–1
    爱因斯坦系数
    A/s–1
    14NH31103.430477.119 × 10200.08750.4527.183
    14NH31103.434326.131 × 10200.09330.5215.263
    14NH31103.441221.514 × 10–190.08180.3888.654
    14NH31103.469787.756 × 10200.07630.3289.694
    14NH31103.479518.172 × 10200.09940.5952.877
    14NH31103.485757.824 × 10200.0710.27410.32
    下载: 导出CSV

    表 2  实验测量线强与HITRAN数据库对比分析

    Table 2.  Comparison of experimental measurement line strength and HITRAN database.

    v0/cm–1SH/cm–2atm–1SM/cm–2atm–1E/%
    1103.430471.783391.704394.43
    1103.434321.535891.463624.71
    1103.441223.792753.69012.71
    1103.469781.942971.878253.33
    1103.479512.047181.970893.73
    1103.485751.960011.883833.89
    下载: 导出CSV

    表 3  混叠光谱线强测量不确定度

    Table 3.  Uncertainty in the measurement of the intensity of the overlapping spectral line.

    积分吸光度的
    不确定度 ΔA/%
    压强的不
    确定度 ΔP/%
    浓度的不
    确定度 Δm/%
    光程的不
    确定度 ΔL/%
    温度的不
    确定度 ΔT/%
    线强的不
    确定度 ΔS/%
    min2.420.150.20.20.12.44
    max8.928.93
    下载: 导出CSV

    表 4  实验测量线强反演浓度与HITRAN数据库线强反演浓度作对比分析

    Table 4.  Contrast analysis of experimentally measured line strong inversion concentration and HITRAN database line strong inversion concentration.

    实验气压/
    torr
    HITRAN数据库线强
    反演浓度 m1/ppm
    实验测量线强反演
    浓度 m2/ppm
    m1与实际浓度
    偏差/%
    m2与实际浓度
    偏差/%
    3.2104.98102.554.982.55
    8.5103.89101.943.891.94
    12.6102.90101.402.901.40
    19.7103.08101.073.081.07
    25.4103.22101.003.221.00
    31.8106.23102.886.232.88
    90.7108.53104.918.534.91
    760108.86104.938.864.93
    下载: 导出CSV

    表 5  不同压力、标气浓度的比较结果

    Table 5.  Comparison results of different pressure and standard gas concentrations.

    压力P/torr
    反演浓度
    m1, m2/ppm
    标气浓度m/ppm
    3.28.512.619.725.4760
    151.68m1156.68155.32154.73154.79154.81159.62
    m2154.12153.54153.05152.77152.70155.48
    202.00m1207.13206.67205.14205.45205.86210.97
    m2205.25204.73204.29203.88203.82207.06
    250.34m1256.08255.03254.26254.45254.71260.25
    m2254.37253.79253.25252.91252.86256.61
    413.00m1420.47419.73418.18418.55418.94423.77
    m2419.65418.33417.61416.87416.76420.51
    下载: 导出CSV
  • [1]

    何莹 2017 博士学位论文(合肥: 中国科学技术大学)

    He Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [2]

    Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8792Google Scholar

    [3]

    Fowler D, Coyle M, Skiba U, Sutton M A, Voss M 2013 Philos. Trans. R. Soc. B-Biol. Sci. 368 0164

    [4]

    Vitousek P M, Menge D N L, Reed S C, Cleveland C C 2013 Philos. Trans. R.Soc. B-Biol. Sci. 368 0119

    [5]

    Bhattacharyya P, Roy K S, Neogi S, Adhya T K, Rao K S, Manna M C 2012 Soil Tillage Res. 124 119Google Scholar

    [6]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [7]

    Tao L, Sun K, Miller D J, Khan M A, Zondlo M A 2012 Opt. Lett. 37 1358Google Scholar

    [8]

    陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰 2013 物理学报 62 224206Google Scholar

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206Google Scholar

    [9]

    王立明, 张玉钧, 李宏斌, 周毅, 尤坤, 何莹, 刘文清 2012 中国光学快报 10 74

    Wang L M, Zhang Y J, Li H B, Zhou Y, You K, He Y, Liu W Q 2012 Chin. Opt. Lett. 10 74

    [10]

    Webber M E, Baer D S, Hanson R K 2001 Appl. Opt. 40 2031Google Scholar

    [11]

    Xu L H, Liu Z, Yakovlev 2004 Infrared Phys. Technol. 45 31Google Scholar

    [12]

    Jia H, Zhao W, Cai T 2009 J. Quant.Spectrosc.Radiat. Transfer 110 347Google Scholar

    [13]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffffries J B, Enns G M, Hanson R K 2016 J. Quant.Spectrosc.Radiat. Transfer 175 90Google Scholar

    [14]

    Romh J E, Cacciani P, Taher F 2016 J. Mol.Spectrosc. 326 122Google Scholar

    [15]

    Yang S, Li J, Wang R 2017 Applied Optics and Photonics China Beijing, China, October 24, 2017 p61

    [16]

    You K, Zhang Y J, Wang L M, Li H B, He Y 2013 Adv. Mater. Res. 760 84

    [17]

    鲁一冰, 刘文清, 张玉钧, 张恺, 何莹, 尤坤, 李潇毅, 刘国华, 唐七星, 范博强, 余冬琪, 李梦琪 2019 光谱学与光谱分析 39 2657

    Lu Y B, Liu W Q, Zhang Y J, Zhang K, He Y, You K, Li X Y, Liu G H, Tang Q X, Fan B Q, Yu D Q, Li M Q 2019 Spectrosc. Spect. Anal. 39 2657

    [18]

    费业泰 2015 误差理论与数据处理 (北京: 机械工业出版社) 第83页

    Fei Y T 2015 Error Theory and Data Processing (Beijing: Machinery Industry Press) p83 (in Chinese)

    [19]

    Xin Z 2005 Pap. Reg. Sci. 8418 3

    [20]

    PogányA, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar

    [21]

    GoldensteinC S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar

    [22]

    GoldensteinC S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100Google Scholar

    [23]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys.Sin. 66 054207Google Scholar

    [24]

    林洁丽 2001 博士学位论文 (武汉: 中国科学院研究生院 (武汉物理与数学研究所))

    Lin J L 2001 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics)) (in Chinese)

  • [1] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 龙江雄, 邵立, 张玉钧, 尤坤, 何莹, 叶庆, 孙晓泉. 4296—4302 cm–1范围内氨气光谱线强与自展宽系数测量研究. 物理学报, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [4] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [5] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法. 物理学报, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [11] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [12] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究. 物理学报, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [13] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [14] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [15] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [16] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [18] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [19] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [20] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计. 物理学报, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
计量
  • 文章访问数:  7272
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-01-14
  • 刊出日期:  2020-04-05

/

返回文章
返回