搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

U型槽刻蚀工艺对GaN垂直沟槽型金属-氧化物-半导体场效应晶体管电学特性的影响

陈扶 唐文昕 于国浩 张丽 徐坤 张宝顺

引用本文:
Citation:

U型槽刻蚀工艺对GaN垂直沟槽型金属-氧化物-半导体场效应晶体管电学特性的影响

陈扶, 唐文昕, 于国浩, 张丽, 徐坤, 张宝顺

Effect of U-shape trench etching process on electrical properties of GaN vertical trench metal-oxide-semiconductor field-effect transistor

Chen Fu, Tang Wen-Xin, Yu Guo-Hao, Zhang Li, Xu Kun, Zhang Bao-Shun
PDF
HTML
导出引用
  • U型槽的干法刻蚀工艺是GaN垂直沟槽型金属-氧化物-半导体场效应晶体管(MOSFET)器件关键的工艺步骤, 干法刻蚀后GaN的侧壁状况直接影响GaN MOS结构中的界面态特性和器件的沟道电子输运. 本文通过改变感应耦合等离子体干法刻蚀工艺中的射频功率和刻蚀掩模, 研究了GaN垂直沟槽型MOSFET电学特性的工艺依赖性. 研究结果表明, 适当降低射频功率, 在保证侧壁陡直的前提下可以改善沟道电子迁移率, 从35.7 cm2/(V·s)提高到48.1 cm2/(V·s), 并提高器件的工作电流. 沟道处的界面态密度可以通过亚阈值摆幅提取, 射频功率在50 W时界面态密度降低到1.90 × 1012 cm–2·eV–1, 比135 W条件下降低了一半. 采用SiO2硬刻蚀掩模代替光刻胶掩模可以提高沟槽底部的刻蚀均匀性. 较薄的SiO2掩模具有更小的侧壁面积, 高能离子的反射作用更弱, 过刻蚀现象明显改善, 制备出的GaN垂直沟槽型MOSFET沟道场效应迁移率更高, 界面态密度更低.
    As reported by several market analysts, GaN-based power devices show great potential applications in the low and medium voltage range ( < 900 V). For high voltage ( > 1200 V), including ship transportation and power grid, the future applications of GaN highly depend on the development of vertical devices based on GaN substrates. Several vertical devices have been reported, such as current aperture vertical electron transistors (CAVETs), U-shape trench metal-oxide-semiconductor field-effect transistors (UMOSFETs), and fin power transistors. And the UMOSFETs show potential advantages due to greater simplicity in material epitaxy and fabrication process. In the fabrication of UMOSFETs, the U-shape trench dry etching is the most critical process. The GaN sidewalls after dry etching directly affect the interface state characteristics in the MOS structure and the channel electron transport. In this work, etching optimization including etching radio-frequency (RF) power and etching mask is investigated and process-dependent electrical characteristics of GaN UMOSFETs are also studied. The appropriate decrease of RF power ensuring the steep sidewalls can effectively improve the channel electron mobility from 35.7 cm2/(V·s) to 48.1 cm2/(V·s) and consequently increase the ON-state current and reduce the ON-state resistance. Larger etching damage to the p-GaN sidewall caused by higher RF power leads the scattering effects to increase and the mobility of the channel carriers to decrease. The interface state density at the channel can be extracted by the subthreshold swing. The interface state density decreases to 1.90 × 1012 cm2·eV–1 when the RF power is regulated to 50 W, which is only half of the interface state density when RF power is 135 W. Similar breakdown voltages (350-380 V) are measured for these devices with varying RF power, which are governed by gate early breakdown. Positive valence band offset is formed in the SiO2/GaN MOS structure and the early breakdown occurs due to the holes accumulating at the SiO2/GaN interface. The etching uniformity at the bottom of U-shape trench can be improved by using the SiO2 hard masks instead of photoresist masks. Sub-trenches at both ends of the trench bottom are observed in the device with photoresist masks, leading the carrier scattering to increase and ON-state current to decrease. Besides, the interface state density decreases from 3.42 × 1012 cm–2·eV–1 to 2.46 × 1012 cm–2·eV–1 with a SiO2 hard mask layer used. Compared with 1.6 μm photoresist mask, the thinner SiO2 mask with a thickness of 500 nm has a small sidewall area, which weakens the high-energy ion reflection in the inductively coupled plasma system. Consequently, the over-etching at the bottom ends of the trench is improved significantly and therefore the fabricated GaN UMOSFET has higher channel mobility and a lower interface state density.
      通信作者: 于国浩, ghyu2009@sinano.ac.cn ; 张宝顺, bszhang2006@sinano.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1830112, 61774014)、苏州市重点产业技术创新-前瞻性应用研究项目(批准号: SYG201848)和微波毫米波单片集成和模块电路重点实验室的开放项目(批准号: 6142803180407)资助的课题
      Corresponding author: Yu Guo-Hao, ghyu2009@sinano.ac.cn ; Zhang Bao-Shun, bszhang2006@sinano.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1830112, 61774014), the Key Industry Technology Innovation Program of Suzhou, China (Grant No. SYG201848), and the Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, China (Grant No. 6142803180407)
    [1]

    Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T, Ueda D 2007 IEEE Trans. Electron Dev. 54 3393Google Scholar

    [2]

    Anderson T J, Wheeler V D, Shahin D I, Tadjer M J, Koehler A D, Hobart K D, Christou A, Kub F J, Eddy C R 2016 Appl. Phys. Express 9 071003Google Scholar

    [3]

    Sun S, Fu K, Yu G, Zhang Z, Song L, Deng X, Qi Z, Li S, Sun Q, Cai Y, Dai J, Chen C, Zhang B 2016 Appl. Phys. Lett. 108 013507Google Scholar

    [4]

    Wang H, Wang J, Liu J, Li M, He Y, Wang M, Yu M, Wu W, Zhou Y, Dai G 2017 Appl. Phys. Express 10 106502Google Scholar

    [5]

    Gao J, Jin Y, Xie B, Wen C P, Hao Y, Shen B, Wang M 2018 IEEE Electron Dev. Lett. 39 859Google Scholar

    [6]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [7]

    Kambayashi H, Satoh Y, Kokawa T, Ikeda N, Nomura T, Kato S 2011 Solid-State Electron. 56 163Google Scholar

    [8]

    崔兴涛, 陈万军, 施宜军, 信亚杰, 李茂林, 王方洲, 周琦, 李肇基, 张波 2019 半导体技术 44 286Google Scholar

    Cui X T, Chen W J, Shi Y J, Xin Y J, Li M L, Wang F Z, Zhou Q, Li Z J, Zhang B 2019 Semiconductor Technology 44 286Google Scholar

    [9]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [10]

    Lin R M, Chu F C, Das A, Liao S Y, Chou S T, Chang L B 2013 Thin Solid Films 544 526Google Scholar

    [11]

    Russo S, Di Carlo A 2007 IEEE Trans. Electron Dev. 54 1071Google Scholar

    [12]

    Horio K, Takayanagi H, Nakano H 2006 Phys. Status Solidi 3 2346Google Scholar

    [13]

    Meneghesso G, Rampazzo F, Kordos P, Verzellesi G, Zanoni E 2007 IEEE Trans. Electron Dev. 53 2932Google Scholar

    [14]

    Oka T, Ina T, Ueno Y, Nishii J 2015 Appl. Phys. Express 8 054101Google Scholar

    [15]

    Chowdhury S, Swenson B L, Wong M H, Mishra U K 2013 Semicond. Sci. Technol. 28 074014Google Scholar

    [16]

    Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G, Prunty T, Bour D, Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939Google Scholar

    [17]

    Ji D, Chowdhury S 2015 IEEE Trans. Electron Dev. 62 2571Google Scholar

    [18]

    Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H 2008 Appl. Phys. Express 1 011105Google Scholar

    [19]

    Oka T, Ueno Y, Ina T, Hasegawa K 2014 Appl. Phys. Express 7 021002Google Scholar

    [20]

    Sun M, Zhang Y, Gao X, Palacios T 2017 IEEE Electron Dev. Lett. 38 509Google Scholar

    [21]

    Zhang Y, Sun M, Perozek J, Liu Z, Zubair A, Piedra D, Chowdhury N, Gao X, Shepard K, Palacios T 2018 IEEE Electron Dev. Lett. 40 75Google Scholar

    [22]

    Gupta C, Chan S H, Lund C, Agarwal A, Koksaldi O S, Liu J, Enatsu Y, Keller S, Mishra U K 2016 Appl. Phys. Express 9 121001Google Scholar

    [23]

    Fujishima T, Otake H, Ohta H 2008 Appl. Phys. Lett. 92 243505Google Scholar

    [24]

    Wang Q, Jiang Y, Zhang J, Kawaharada K, Li L, Wang D, Ao J P 2015 Semicond. Sci. Technol. 30 065004Google Scholar

    [25]

    施罗德 D K 著 (刘爱民等 译) 1998 半导体材料与器件表征技术 (大连: 大连理工大学出版社) 第284−286页

    Schroder D K (translated by Liu A M) 1998 Semiconductor Material and Device Characterization (Dalian: Dalian University of Technology Press) pp284−286 (in Chinese)

    [26]

    Gupta C, Chan S, Pasayat S, Keller S, Mishra U 2019 J. Appl. Phys. 125 124101Google Scholar

    [27]

    Narita T, Kikuta D, Takahashi N, Kataoka K, Kimoto Y, Uesugi T, Kachi T, Sugimoto M 2011 Phys. Status Solidi A 208 1541Google Scholar

    [28]

    Kodama M, Sugimoto M, Hayashi E, Soejima N, Ishiguro O, Kanechika M, Itoh K, Ueda H, Uesugi T, Kachi T 2008 Appl. Phys. Express 1 021104Google Scholar

    [29]

    Flemish J R, Xie K 1994 Appl. Phys. Lett. 64 2315Google Scholar

  • 图 1  GaN垂直型UMOSFET器件示意图

    Fig. 1.  Cross-sectional schematic of a vertical GaN UMOSFET.

    图 2  干法刻蚀RF功率为50, 75和135 W制备出GaN UMOSFET器件的电学特性曲线(IGSIDS分别指栅电流和漏电流) (a)转移特性曲线; (b)沟道场效应迁移率随栅电压VGS的变化曲线; (c)亚阈值特性; (d) RF功率50 W的器件三端击穿特性

    Fig. 2.  Electrical characteristics of GaN UMOSFETs fabricated with RF power of 50, 75 and 135 W (IGS and IDS are gate and drain currents): (a) Transfer characteristics; (b) field-effect channel mobility as a function of gate voltage; (c) subthreshold characteristics; (d) breakdown characteristics.

    图 3  采用光刻胶和SiO2作为刻蚀掩模制备出的GaN UMOSFET器件的电学特性曲线 (a)转移特性曲线; (b)沟道场效应迁移率随栅电压的变化曲线; (c)输出特性曲线; (d)亚阈值特性

    Fig. 3.  Electrical characteristics of GaN UMOSFETs with SiO2 and photoresist as etching masks: (a) Transfer characteristics; (b) field-effect channel mobility vs. gate voltage; (c) output $ I\text-V $ characteristics; (d) subthreshold characteristics.

    图 4  (a)采用不同刻蚀掩模后U型槽的刻蚀形貌; (b)刻蚀掩模侧壁的高能粒子反射现象

    Fig. 4.  (a) Etching morphology of the U-shape trench using different etching masks; (b) high-energy ion reflection at the sidewall of etching masks.

    图 5  光刻胶掩模的样品经U型槽刻蚀后的SEM图像

    Fig. 5.  SEM image of U-shape trench after dry etching with photoresist etching mask.

    表 1  干法刻蚀条件参数(1 Torr = 1.33322 × 102 Pa)

    Table 1.  Experiment parameters of the dry etching process.

    条件刻蚀气体及流量RF功率/WICP功率/W腔室压强/mTorr刻蚀掩模
    A24 sccm Cl2, 16 sccm BCl3, 5 sccm Ar1355008光刻胶(PR)
    B75
    C50
    D50SiO2
    下载: 导出CSV
  • [1]

    Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T, Ueda D 2007 IEEE Trans. Electron Dev. 54 3393Google Scholar

    [2]

    Anderson T J, Wheeler V D, Shahin D I, Tadjer M J, Koehler A D, Hobart K D, Christou A, Kub F J, Eddy C R 2016 Appl. Phys. Express 9 071003Google Scholar

    [3]

    Sun S, Fu K, Yu G, Zhang Z, Song L, Deng X, Qi Z, Li S, Sun Q, Cai Y, Dai J, Chen C, Zhang B 2016 Appl. Phys. Lett. 108 013507Google Scholar

    [4]

    Wang H, Wang J, Liu J, Li M, He Y, Wang M, Yu M, Wu W, Zhou Y, Dai G 2017 Appl. Phys. Express 10 106502Google Scholar

    [5]

    Gao J, Jin Y, Xie B, Wen C P, Hao Y, Shen B, Wang M 2018 IEEE Electron Dev. Lett. 39 859Google Scholar

    [6]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [7]

    Kambayashi H, Satoh Y, Kokawa T, Ikeda N, Nomura T, Kato S 2011 Solid-State Electron. 56 163Google Scholar

    [8]

    崔兴涛, 陈万军, 施宜军, 信亚杰, 李茂林, 王方洲, 周琦, 李肇基, 张波 2019 半导体技术 44 286Google Scholar

    Cui X T, Chen W J, Shi Y J, Xin Y J, Li M L, Wang F Z, Zhou Q, Li Z J, Zhang B 2019 Semiconductor Technology 44 286Google Scholar

    [9]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [10]

    Lin R M, Chu F C, Das A, Liao S Y, Chou S T, Chang L B 2013 Thin Solid Films 544 526Google Scholar

    [11]

    Russo S, Di Carlo A 2007 IEEE Trans. Electron Dev. 54 1071Google Scholar

    [12]

    Horio K, Takayanagi H, Nakano H 2006 Phys. Status Solidi 3 2346Google Scholar

    [13]

    Meneghesso G, Rampazzo F, Kordos P, Verzellesi G, Zanoni E 2007 IEEE Trans. Electron Dev. 53 2932Google Scholar

    [14]

    Oka T, Ina T, Ueno Y, Nishii J 2015 Appl. Phys. Express 8 054101Google Scholar

    [15]

    Chowdhury S, Swenson B L, Wong M H, Mishra U K 2013 Semicond. Sci. Technol. 28 074014Google Scholar

    [16]

    Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G, Prunty T, Bour D, Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939Google Scholar

    [17]

    Ji D, Chowdhury S 2015 IEEE Trans. Electron Dev. 62 2571Google Scholar

    [18]

    Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H 2008 Appl. Phys. Express 1 011105Google Scholar

    [19]

    Oka T, Ueno Y, Ina T, Hasegawa K 2014 Appl. Phys. Express 7 021002Google Scholar

    [20]

    Sun M, Zhang Y, Gao X, Palacios T 2017 IEEE Electron Dev. Lett. 38 509Google Scholar

    [21]

    Zhang Y, Sun M, Perozek J, Liu Z, Zubair A, Piedra D, Chowdhury N, Gao X, Shepard K, Palacios T 2018 IEEE Electron Dev. Lett. 40 75Google Scholar

    [22]

    Gupta C, Chan S H, Lund C, Agarwal A, Koksaldi O S, Liu J, Enatsu Y, Keller S, Mishra U K 2016 Appl. Phys. Express 9 121001Google Scholar

    [23]

    Fujishima T, Otake H, Ohta H 2008 Appl. Phys. Lett. 92 243505Google Scholar

    [24]

    Wang Q, Jiang Y, Zhang J, Kawaharada K, Li L, Wang D, Ao J P 2015 Semicond. Sci. Technol. 30 065004Google Scholar

    [25]

    施罗德 D K 著 (刘爱民等 译) 1998 半导体材料与器件表征技术 (大连: 大连理工大学出版社) 第284−286页

    Schroder D K (translated by Liu A M) 1998 Semiconductor Material and Device Characterization (Dalian: Dalian University of Technology Press) pp284−286 (in Chinese)

    [26]

    Gupta C, Chan S, Pasayat S, Keller S, Mishra U 2019 J. Appl. Phys. 125 124101Google Scholar

    [27]

    Narita T, Kikuta D, Takahashi N, Kataoka K, Kimoto Y, Uesugi T, Kachi T, Sugimoto M 2011 Phys. Status Solidi A 208 1541Google Scholar

    [28]

    Kodama M, Sugimoto M, Hayashi E, Soejima N, Ishiguro O, Kanechika M, Itoh K, Ueda H, Uesugi T, Kachi T 2008 Appl. Phys. Express 1 021104Google Scholar

    [29]

    Flemish J R, Xie K 1994 Appl. Phys. Lett. 64 2315Google Scholar

  • [1] 苏乐, 王彩琳, 谭在超, 罗寅, 杨武华, 张超. 功率金属-氧化物半导体场效应晶体管静电放电栅源电容解析模型的建立. 物理学报, 2024, 73(11): 118501. doi: 10.7498/aps.73.20240144
    [2] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211691
    [3] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [4] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [5] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [6] 白玉蓉, 徐静平, 刘璐, 范敏敏, 黄勇, 程智翔. 高k栅介质小尺寸全耗尽绝缘体上锗p型金属氧化物半导体场效应晶体管漏源电流模型. 物理学报, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [7] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [8] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [9] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型. 物理学报, 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [10] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [11] 李斌, 刘红侠, 袁博, 李劲, 卢凤铭. 应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型. 物理学报, 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [12] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响. 物理学报, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [13] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [14] 闫建成, 何智兵, 阳志林, 张颖, 唐永建, 韦建军. 射频功率对辉光放电聚合物结构和性能的影响. 物理学报, 2011, 60(3): 036501. doi: 10.7498/aps.60.036501
    [15] 李伟华, 庄奕琪, 杜磊, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究. 物理学报, 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [16] 朱丽, 江美福, 宁兆元, 杜记龙, 王培君. 不同射频输入功率下制备的氟化类金刚石碳膜疏水性研究. 物理学报, 2009, 58(9): 6430-6435. doi: 10.7498/aps.58.6430
    [17] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅰ) sp结构与化学键分析. 物理学报, 2007, 56(3): 1802-1808. doi: 10.7498/aps.56.1802
    [18] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响. 物理学报, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [19] 李红轩, 徐 洮, 陈建敏, 周惠娣, 刘惠文. 射频功率对类金刚石薄膜结构和性能的影响. 物理学报, 2005, 54(4): 1885-1889. doi: 10.7498/aps.54.1885
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  10198
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-05
  • 修回日期:  2020-02-12
  • 刊出日期:  2020-05-05

/

返回文章
返回