-
直接吸收光谱(DAS)可直接测量分子吸收率函数, 并通过拟合吸收率函数确定待测气体参数. 波长调制-直接吸收光谱(WM-DAS)在DAS基础上, 结合了波长调制光谱(WMS)中谐波分析思想, 利用傅里叶变换复现吸收率函数, 可有效提高吸收率函数的测量精度. 本文利用WM-DAS方法结合长光程气体吸收池, 在室温低压条件下, 对CO分子1567 nm处R5—R11近红外弱吸收谱线吸收率函数进行了精确复现, 其拟合残差标准差低至3 × 10–5, 随后根据测得的吸收率函数对谱线的碰撞展宽、Dicke收敛以及速度依赖的碰撞展宽系数等光谱参数进行了高精度标定, 并将其与高灵敏度的连续波腔衰荡光谱(CW-CRDS)测量结果进行了比较, 实验结果表明该方法与CW-CRDS测量结果具有高度一致性, 更具有系统简单、测量速度快、对环境要求低等优点.
-
关键词:
- 波长调制-直接吸收光谱 /
- 腔衰荡光谱 /
- 吸收率函数 /
- 碰撞展宽系数 /
- Dicke收敛系数
Direct absorption spectrum (DAS) can be used to measure the molecular absorptivity function and determine the spectral parameters of the gas by fitting the measured absorptivity function. Wavelength modulation-direct absorption spectroscopy (WM-DAS) is based on DAS and combines with the idea of harmonic analysis in wavelength modulation spectrum (WMS). The measurement accuracy of absorptivity function can be effectively improved by using Fourier transform. In this paper, the absorptivity function of CO R5–R11 near infrared weak absorption line at 1567 nm is accurately reproduced by using the WM-DAS method combined with long optical path gas absorption cell at room temperature and low pressure. The standard deviation of the fitting residual reaches 3 × 10–5, and then the spectral parameters such as collision broadening, Dicke narrowing and speed-dependent collision broadening coefficients are measured in high precision. These parameters are compared with the results from the high sensitivity continuous wave cavity ring down spectroscopy (CW-CRDS). The experimental results show that the signal-to-noise ratio of the absorptivity function measured by CW-CRDS is about 2.5 times that of the long-path WM-DAS, and the measured spectral parameters are highly consistent. The relative errors of the collision broadening coefficients obtained by using the Voigt profiles of the two methods are less than 1%. At the same time, the detection limit of CO at 1567 nm based on the WM-DAS method is about 80 ppb, and the corresponding absorption coefficient is 2 × 10–10 cm–1, which is slightly higher than that from the CW-CRDS method. However, the WM-DAS method has the advantages of fast measurement speed, simple system and low cost, and is expected to provide a new method of measuring the weak absorption lines. -
Keywords:
- wavelength modulation-direct absorption spectroscopy /
- cavity ring down spectroscopy /
- absorptivity function /
- collision broadening coefficient /
- Dicke narrowing coefficient
[1] Devi V M, Benner D C, Smith M A H, Mantz A W, Sung K, Brown L R, Predoi-Cross A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1013Google Scholar
[2] Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113Google Scholar
[3] Brandstetter M, Genner A, Schwarzer C, Mujagic E, Strasser G, Lendl B 2014 Opt. Express 22 2656Google Scholar
[4] Meek A S, Poisson A, Guelachvili G, Hansch W T, Picqué N 2014 Appl. Phys. B 114 573Google Scholar
[5] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar
[6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132Google Scholar
[7] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[8] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[9] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203Google Scholar
[10] He D, Peng Z M, Ding Y J 2019 Combust. Flame 207 222Google Scholar
[11] Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar
[12] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar
[13] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[14] Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar
[15] Dahlen D, Wilcox R, Leemans W 2017 Appl. Opt. 52 267Google Scholar
[16] Tarsitano C G, Webster C R 2007 Appl. Opt. 46 6923Google Scholar
[17] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124Google Scholar
[18] Regalia L, Oudot C, Thomas X, Von der Heyden P, Decatoire D 2010 J. Quant. Spectrosc. Radiat. Transfer 111 826Google Scholar
[19] Nahar N K, Rojas R G 2009 Appl. Opt. 48 3921Google Scholar
[20] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar
[21] Zhao W, Gao X, Chen W, Zhang W, Huang T, Wu T, Cha H 2007 Appl. Phys. B 86 353Google Scholar
[22] Zheng K Y, Zheng C T, He Q X, Yao D, Hu L, Zhang Y, Wang Y D, Tittel F K 2018 Opt. Express 26 26205Google Scholar
[23] 李志彬, 马洪亮, 曹政松, 孙明国, 黄印博, 朱文越, 刘强 2016 物理学报 65 053301Google Scholar
Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301Google Scholar
[24] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[25] Morville J, Romanini D, Kachanov A A, Chenevier M 2004 Appl. Phys. B 78 465Google Scholar
[26] Long D A, Fleisher A J, Liu Q, Hodges J T 2016 Opt. Lett. 41 1612Google Scholar
[27] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[28] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar
[29] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[30] Du Y J, Peng Z M, Ding Y J 2020 Opt. Express 28 3482Google Scholar
[31] Kassi S, Karlovets E V, Tashkun S A, Perevalov V I, Campargue A 2017 J. Quant. Spectrosc. Radiat. Transfer 187 414Google Scholar
[32] Goldenstein C S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar
[33] Schreier F 2017 J. Quant. Spectrosc. Radiat. Transfer 187 44Google Scholar
[34] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 29550Google Scholar
[35] Kowzan G, Stec K, Zaborowski M, Wójtewicz S, Cygan A, Lisak D, Masłowski P, Trawiński R S 2017 J. Quant. Spectrosc. Radiat. Transfer 191 46Google Scholar
[36] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[37] Allan D W 1966 Proc. IEEE 54 221Google Scholar
[38] Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radiat. Transfer 154 35Google Scholar
-
图 1 WM-DAS与CW-CRDS的系统原理图(LC, 激光电流和温度控制器; FI, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; PZT, 压电换能器; WM, 波长计)
Fig. 1. System schematic diagram of WM-DAS and CW-CRDS. LC, laser current and temperature controller; FI, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; PZT, piezoelectric transducer; WM, wavelength meter.
图 3 测量的CO光谱及其最佳Voigt和Rautian线型拟合结果(XCO, c, τ和σSD分别为CO浓度、光速、衰荡时间和残差的标准差) (a) WM-DAS; (b) CW-CRDS
Fig. 3. Measured absorption function of CO and the best fits of Voigt and Rautian profile (XCO, c, τ, and σSD represent the CO concentration, light velocity, ring down time and standard deviation of the residual, respectively): (a) WM-DAS; (b) CW-CRDS.
表 1 WM-DAS和CW-CRDS测量的光谱参数及其不确定度
Table 1. Measured spectroscopic parameters and uncertainties.
v0/cm–1 Transition E′′/cm–1 ϕ γ0(T0)/10–2 cm–1·atm–1 β0(T0)/10–2 cm–1·atm–1 γ2(T0)/10–2 cm–1·atm–1 CRDS WM HT CRDS WM CRDS WM 6371.299 R5 57.670 VP 6.26b 6.23b 6.29a — — — — GP 6.43b 6.48b 2.84c 2.90d — — RP 6.47b 6.50b 2.57c 2.67d — — SDVP 6.50b 6.55b — — 0.87c 0.77d 6374.406 R6 80.735 VP 6.10b 6.08b 6.12a — — — — GP 6.20b 6.30b 2.65c 2.71d — — RP 6.25b 6.30b 2.38c 2.46d — — SDVP 6.26b 6.36b — — 0.69c 0.73d 6377.407 R7 107.642 VP 5.97b 5.94b 5.99a — — — — GP 6.07b 6.12b 2.22c 2.48d — — RP 6.10b 6.17b 2.06c 2.36d — — SDVP 6.25b 6.24b — — 0.71c 0.71d 6380.301 R8 138.390 VP 5.89b 5.88b 5.89a — — — — GP 6.04b 6.02b 2.20c 2.27d — — RP 6.06b 6.09b 2.14c 2.14d — — SDVP 6.11b 6.15b — — 0.70c 0.64d 6383.090 R9 172.978 VP 5.80b 5.78b 5.80a — — — — GP 5.91b 6.03b 2.08c 2.11d — — RP 5.94b 6.03b 1.89c 1.85d — — SDVP 5.97b 6.09b — — 0.61c 0.63d 6385.771 R10 211.404 VP 5.72b 5.68b 5.73a — — — — GP 5.91b 5.89b 2.27c 2.29d — — RP 5.92b 5.91b 1.98c 1.86d — — SDVP 5.98b 5.96b — — 0.62c 0.65d 6388.347 R11 253.667 VP 5.62b 5.58b 5.67a — — — — GP 5.91b 5.80b 2.62c 2.21d — — RP 5.93b 5.82b 2.15c 2.00d — — SDVP 5.95b 5.89b — — 0.77c 0.67d 注: WM代表WM-DAS, HT表示HITRAN[36];a表示相同温度(T0 = 288 K)下HITRAN的数据, 空气为背景气;b不确定度 0—1%;c不确定度 5%—15%;d不确定度 10%—20%. -
[1] Devi V M, Benner D C, Smith M A H, Mantz A W, Sung K, Brown L R, Predoi-Cross A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1013Google Scholar
[2] Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113Google Scholar
[3] Brandstetter M, Genner A, Schwarzer C, Mujagic E, Strasser G, Lendl B 2014 Opt. Express 22 2656Google Scholar
[4] Meek A S, Poisson A, Guelachvili G, Hansch W T, Picqué N 2014 Appl. Phys. B 114 573Google Scholar
[5] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar
[6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132Google Scholar
[7] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[8] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[9] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203Google Scholar
[10] He D, Peng Z M, Ding Y J 2019 Combust. Flame 207 222Google Scholar
[11] Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar
[12] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar
[13] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[14] Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar
[15] Dahlen D, Wilcox R, Leemans W 2017 Appl. Opt. 52 267Google Scholar
[16] Tarsitano C G, Webster C R 2007 Appl. Opt. 46 6923Google Scholar
[17] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124Google Scholar
[18] Regalia L, Oudot C, Thomas X, Von der Heyden P, Decatoire D 2010 J. Quant. Spectrosc. Radiat. Transfer 111 826Google Scholar
[19] Nahar N K, Rojas R G 2009 Appl. Opt. 48 3921Google Scholar
[20] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar
[21] Zhao W, Gao X, Chen W, Zhang W, Huang T, Wu T, Cha H 2007 Appl. Phys. B 86 353Google Scholar
[22] Zheng K Y, Zheng C T, He Q X, Yao D, Hu L, Zhang Y, Wang Y D, Tittel F K 2018 Opt. Express 26 26205Google Scholar
[23] 李志彬, 马洪亮, 曹政松, 孙明国, 黄印博, 朱文越, 刘强 2016 物理学报 65 053301Google Scholar
Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301Google Scholar
[24] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[25] Morville J, Romanini D, Kachanov A A, Chenevier M 2004 Appl. Phys. B 78 465Google Scholar
[26] Long D A, Fleisher A J, Liu Q, Hodges J T 2016 Opt. Lett. 41 1612Google Scholar
[27] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[28] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar
[29] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[30] Du Y J, Peng Z M, Ding Y J 2020 Opt. Express 28 3482Google Scholar
[31] Kassi S, Karlovets E V, Tashkun S A, Perevalov V I, Campargue A 2017 J. Quant. Spectrosc. Radiat. Transfer 187 414Google Scholar
[32] Goldenstein C S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar
[33] Schreier F 2017 J. Quant. Spectrosc. Radiat. Transfer 187 44Google Scholar
[34] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 29550Google Scholar
[35] Kowzan G, Stec K, Zaborowski M, Wójtewicz S, Cygan A, Lisak D, Masłowski P, Trawiński R S 2017 J. Quant. Spectrosc. Radiat. Transfer 191 46Google Scholar
[36] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[37] Allan D W 1966 Proc. IEEE 54 221Google Scholar
[38] Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radiat. Transfer 154 35Google Scholar
计量
- 文章访问数: 10435
- PDF下载量: 147
- 被引次数: 0