-
卫星在轨运行时, 航天器表面材料与周围的等离子体环境相互作用, 会积累电荷产生表面充电效应, 严重时将导致静电放电从而影响航天器的运行. SMILE卫星运行在太阳同步轨道和高倾角大椭圆轨道, 在轨运行将遭遇多种等离子体环境, 产生的表面充电效应将影响卫星在轨安全和科学数据的获取. 本文采用spacecraft plasma interaction system软件仿真, 建立了复杂精细的三维模型, 评估了卫星在磁尾瓣等离子体、太阳风等离子体及地球静止轨道极端恶劣等离子体不同环境中的表面充电风险. 仿真结果显示, 不同环境下的表面充电电位有差异, 但是不会影响科学载荷的数据获取. 通过对表面电流的分析发现, 二次电子发射在各种等离子体环境中都对表面充电有很大的影响. 通过分析阴影区材料表面充电电流, 计算得到的结果能够补充氧化铟锡材料二次电子发射系数实验曲线. 在光照下, 光电子发射在表面充电中占据统治地位.
-
关键词:
- 表面充电效应 /
- SMILE卫星 /
- spacecraft plasma interaction system仿真 /
- 等离子体
When the satellite is on orbit, the surrounding plasma environment will interact with the spacecraft surface, accumulate charges on the spacecraft surface and cause surface charging effect, which could lead to electrostatic discharge and affect the running of the spacecraft. SMILE is a satellite operating in a solar synchronous and high inclination large elliptical orbit. The on-orbit motion will encounter ionospheric plasma, magnetospheric plasma and solar wind plasma, pass through the region of the outer radiation belt enriched by high-energy electrons. These environmental factors can cause the surface charging effect on satellite and affect on-orbit security of the satellite and the acquisition of scientific data. Utilizing the software simulation of spacecraft plasma interaction system, the charging effects of SMILE satellite surface in solar wind plasma, magnetic tail plasma and extremely harsh plasma environment have been simulated, and the charging potential distribution on its surface have been obtained. The results show that the surface charging potential varies in different environments, but all comfort with the design requirements. The analysis of surface current shows that the secondary electron emission has great influence on surface charging in various plasma environments. Under sun illumination, photoelectron emission dominates surface charging. By analyzing the charge current on the surface on the eclipse, the calculated results can supply the experimental curve of the secondary electron emission coefficient of indium tin oxide materials.-
Keywords:
- surface charging effect /
- SMILE /
- spacecraft plasma interaction system /
- plasma
[1] Ferguson D 1993 31st Aerospace Sciences Meeting Reno, NV, USA, January 11–14, 1993 p705
[2] 王立 1995 真空与低温 1 2
Wang L 1995 Vac. Cryogenics 1 2
[3] 王立, 秦晓刚 2002 真空与低温 8 2
Wang L, Qin X G 2002 Vac. Cryogenics 8 2
[4] Ch J Mateo-Velez, Sarrail H P, Roussel J F 2010 Technical Manual of SPIS Final Report FR 10/14511 DESP
[5] Whipple E C, Krinsky I S, Torbert R B, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium Noordwijk, The Netherlands, September 13–16, 1983 p35
[6] Reasoner D L, Lennartsson W, Chappell C R 1976 Spacecraft Charging by Magnetospheric Plasmas 47 89
[7] 庞永江 2001 硕士学位论文 (北京: 中国科学院)
Pang Y J 2001 M. S. Thesis (Beijing: Chinese Academy of Sciences) (in Chinese)
[8] 田立成, 石红, 李娟, 张天平 2012 航天器环境工程 29 2
Tian L C, Shi H, Li J, Zhang T P 2012 Spacecraft Environ. Eng. 29 2
[9] 杨昉, 师立勤, 刘四清, 龚建村 2011 空间科学学报 31 4
Yang F, Shi L Q, Liu S Q, Gong J C 2011 Chin. J. Spac. Sci. 31 4
[10] Schmidt R, Arends H, Pedersen A, Rüdenauer F, Fehringer M, Narheim B T, Svenes R, Kvernsveen K, Tsuruda K, Mukai T, Hayakawa H, Nakamura H M 1995 JGR: Space Physics 100 A9
[11] Riedler W, Torkar K, Rüdenauer F, Fehringer M, Pedersen A, Schmidt R, Grard J L, Arends H, Narheim B T, Troim J, Torbert R, Olsen R C, Whipple E, Goldstein R, Valavanoglou N, Zhao H 1997 The Cluster and Phoenix Missions 79 271
[12] Pedersen A, Chapell C R, Knott K, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium ESA SP-198 Noordwijk, The Netherlands, September 13–16, 1983 p185
[13] 张国荣, 柯建新, 许滨 2014 计算机仿真 9 38Google Scholar
Zhang G R, Ke J X, Xu B 2014 Comput. Simul. 9 38Google Scholar
[14] 原青云, 孙永卫 2015 河北师范大学学报: 自然科学版 1 38
Yuan Q Y, Sun Y W 2015 J. Hebei Normal Univ.: Nat. Sci. Ed. 1 38
[15] 杨集, 陈贤祥, 夏善红 2007 微纳电子技术 44 7Google Scholar
Yang J, Chen X X, Xia S H 2007 Micronanoelectronic Technol. 44 7Google Scholar
[16] 姜春华, 赵正予 2008 航天器环境工程 25 2
Jiang C H, Zhao Z Y 2008 Spacecraft Environ. Eng. 25 2
[17] 顾超超, 陈晓宁, 林楚 2017 微型机与应用 36 11
Gu C C, Chen X N, Lin C 2017 Microcomputer & Its Applications 36 11
[18] 朱基聪, 方美华, 武明志, 田鹏宇, 费涛 2018 真空科学与技术学报 38 6
Zhu J C, Fang M H, Wu M Z, Tian P Y, Fei T 2018 Chin. J. Vac. Technol. 38 6
[19] Ferro O J, Hess S, Seran E, Denis P 2018 IEEE Trans. Plasma Sci. 46 3Google Scholar
[20] Galgani G, Antonelli M, Bandinelli M, Scione E, Scorzafaval E Esa Workshop on Aerospace Emc. IEEE Valencia, Spain, May 23–25, 2016 p89
[21] 陈益峰, 杨生胜, 李得天, 秦晓刚, 王俊, 柳青 2015 原子能科学技术 49 1673Google Scholar
Chen Y F, Yang S S, Li D T, Qin X G, Wang J, Liu Q 2015 Atom. Energ. Sci. Technol. 49 1673Google Scholar
[22] Kuznetsova I A, Hessb S L G, Zakharova A V, Ciprianic F, Serand E, Popela S I, Lisine E A, Petrove O F, Dolnikova G G, Lyasha A A, Kopnina K I 2018 Planet. Space Sci. 156 62Google Scholar
[23] 赵呈选, 李得天, 杨生胜, 秦晓刚, 王俊 2017 高电压技术 43 1438
Zhao C X, Li D T, Yang S S, Qin X G, Wang J 2017 High Voltage Eng. 43 1438
[24] 毕嘉眙, 李磊 2018 空间科学学报 38 909Google Scholar
Bi J Y, Li L 2018 Chin. J. Space Sci. 38 909Google Scholar
[25] 朱基聪, 方美华, 全荣辉, 田鹏宇, 梁尔涛 2018 南京航空航天大学学报 50 422
Zhu J C, Fang M H, Quan R H, Tian P Y, Liang E T 2018 J. Nanjing Univ. Aeronaut. Astronautics 50 422
[26] Garrett H B 1981 Rev. Geophys. Space Phys. 19 4
[27] Smith H M, Langmuir I 1926 Phys. Rev. 28 4
[28] Bernstein I B, Rabinowitz I 1959 Phys. Fluids 2 2
[29] Laframboise J G 1966 University of Toronto, Institute for Aerospace Studies, UTIAS Report No. 100
[30] Chen F F 1965 Plasma Phys. 7 1
[31] 买胜利, 王立, 李凯, 秦晓刚 2006 真空与低温 12 2
Mai S L, Wang L, Li K, Qin X G 2006 Vac. Cryogenics 12 2
[32] 王思展 2019 科技与创新 8 14
Wang S Z 2019 Sci. Technol. Innov. 8 14
[33] 王思展, 黄建国, 姜利祥, 王军伟 2019 环境技术 4 18
Wang S Z, Huang J G, Jiang L X, Wang J W 2019 Environ. Technol. 4 18
[34] 陈益峰, 杨生胜, 李得天, 秦晓刚, 史亮, 冯娜 2014 现代应用物理 5 3
Chen Y F, Yang S S, Li D T, Qin X G, Shi L, Feng N 2014 Mod. Appl. Phys. 5 3
[35] 杨集, 陈贤祥, 周杰, 夏善红 2010 宇航学报 31 531Google Scholar
Yang J, Chen X X, Zhou J, Xia S H 2010 J. Astronautics 31 531Google Scholar
-
表 1 SMILE卫星模型电路节点、表面材料及电路设置
Table 1. Design of nodes, surface materials and circuits of SMILE model.
航天器部件 电路节点 表面
材料电路
设置/Ω载荷仓(底面) 0 ITO 载荷仓 1—5 ITO 20000 伸杆天线 6 KAPT 20000 推进器 7—10 ITO 20000 太阳电池下表面 11, 12 CFRP 37500 太阳电池上表面 13, 14 ITO 20000 +X面测控天线顶端 15, 17 PCBZ 20000 +X面测控天线底端 16, 18 ITO 20000 星敏 19—21 ITO 20000 推进舱+X面探测器 22 AL 20000 推进舱-X面探测器 23 AL 20000 散热板对内面 24, 26, 28 ITO 20000 散热板对外面 25, 27, 29 PCBZ 20000 -X面测控天线 30, 31 PCBZ 20000 LIA安装面、测量面 32, 34, 36, 38 AL 20000 LIA对外面 33, 37 PCBZ 20000 LIA靠星体面 35, 39 ITO 20000 探测器镜头 40—42 ITO 20000 表 2 等离子体环境参数
Table 2. Parameters of various plasma environment.
等离子体环境 离子密度 电子密度 离子温度 电子温度 cm–3 cm–3 eV eV 磁尾瓣 0.1 0.1 540 180 太阳风 8.7 8.7 12 10 GEO极端恶劣 成分1 0.6 0.2 2000 4000 成分2 1.3 1.2 28000 27500 -
[1] Ferguson D 1993 31st Aerospace Sciences Meeting Reno, NV, USA, January 11–14, 1993 p705
[2] 王立 1995 真空与低温 1 2
Wang L 1995 Vac. Cryogenics 1 2
[3] 王立, 秦晓刚 2002 真空与低温 8 2
Wang L, Qin X G 2002 Vac. Cryogenics 8 2
[4] Ch J Mateo-Velez, Sarrail H P, Roussel J F 2010 Technical Manual of SPIS Final Report FR 10/14511 DESP
[5] Whipple E C, Krinsky I S, Torbert R B, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium Noordwijk, The Netherlands, September 13–16, 1983 p35
[6] Reasoner D L, Lennartsson W, Chappell C R 1976 Spacecraft Charging by Magnetospheric Plasmas 47 89
[7] 庞永江 2001 硕士学位论文 (北京: 中国科学院)
Pang Y J 2001 M. S. Thesis (Beijing: Chinese Academy of Sciences) (in Chinese)
[8] 田立成, 石红, 李娟, 张天平 2012 航天器环境工程 29 2
Tian L C, Shi H, Li J, Zhang T P 2012 Spacecraft Environ. Eng. 29 2
[9] 杨昉, 师立勤, 刘四清, 龚建村 2011 空间科学学报 31 4
Yang F, Shi L Q, Liu S Q, Gong J C 2011 Chin. J. Spac. Sci. 31 4
[10] Schmidt R, Arends H, Pedersen A, Rüdenauer F, Fehringer M, Narheim B T, Svenes R, Kvernsveen K, Tsuruda K, Mukai T, Hayakawa H, Nakamura H M 1995 JGR: Space Physics 100 A9
[11] Riedler W, Torkar K, Rüdenauer F, Fehringer M, Pedersen A, Schmidt R, Grard J L, Arends H, Narheim B T, Troim J, Torbert R, Olsen R C, Whipple E, Goldstein R, Valavanoglou N, Zhao H 1997 The Cluster and Phoenix Missions 79 271
[12] Pedersen A, Chapell C R, Knott K, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium ESA SP-198 Noordwijk, The Netherlands, September 13–16, 1983 p185
[13] 张国荣, 柯建新, 许滨 2014 计算机仿真 9 38Google Scholar
Zhang G R, Ke J X, Xu B 2014 Comput. Simul. 9 38Google Scholar
[14] 原青云, 孙永卫 2015 河北师范大学学报: 自然科学版 1 38
Yuan Q Y, Sun Y W 2015 J. Hebei Normal Univ.: Nat. Sci. Ed. 1 38
[15] 杨集, 陈贤祥, 夏善红 2007 微纳电子技术 44 7Google Scholar
Yang J, Chen X X, Xia S H 2007 Micronanoelectronic Technol. 44 7Google Scholar
[16] 姜春华, 赵正予 2008 航天器环境工程 25 2
Jiang C H, Zhao Z Y 2008 Spacecraft Environ. Eng. 25 2
[17] 顾超超, 陈晓宁, 林楚 2017 微型机与应用 36 11
Gu C C, Chen X N, Lin C 2017 Microcomputer & Its Applications 36 11
[18] 朱基聪, 方美华, 武明志, 田鹏宇, 费涛 2018 真空科学与技术学报 38 6
Zhu J C, Fang M H, Wu M Z, Tian P Y, Fei T 2018 Chin. J. Vac. Technol. 38 6
[19] Ferro O J, Hess S, Seran E, Denis P 2018 IEEE Trans. Plasma Sci. 46 3Google Scholar
[20] Galgani G, Antonelli M, Bandinelli M, Scione E, Scorzafaval E Esa Workshop on Aerospace Emc. IEEE Valencia, Spain, May 23–25, 2016 p89
[21] 陈益峰, 杨生胜, 李得天, 秦晓刚, 王俊, 柳青 2015 原子能科学技术 49 1673Google Scholar
Chen Y F, Yang S S, Li D T, Qin X G, Wang J, Liu Q 2015 Atom. Energ. Sci. Technol. 49 1673Google Scholar
[22] Kuznetsova I A, Hessb S L G, Zakharova A V, Ciprianic F, Serand E, Popela S I, Lisine E A, Petrove O F, Dolnikova G G, Lyasha A A, Kopnina K I 2018 Planet. Space Sci. 156 62Google Scholar
[23] 赵呈选, 李得天, 杨生胜, 秦晓刚, 王俊 2017 高电压技术 43 1438
Zhao C X, Li D T, Yang S S, Qin X G, Wang J 2017 High Voltage Eng. 43 1438
[24] 毕嘉眙, 李磊 2018 空间科学学报 38 909Google Scholar
Bi J Y, Li L 2018 Chin. J. Space Sci. 38 909Google Scholar
[25] 朱基聪, 方美华, 全荣辉, 田鹏宇, 梁尔涛 2018 南京航空航天大学学报 50 422
Zhu J C, Fang M H, Quan R H, Tian P Y, Liang E T 2018 J. Nanjing Univ. Aeronaut. Astronautics 50 422
[26] Garrett H B 1981 Rev. Geophys. Space Phys. 19 4
[27] Smith H M, Langmuir I 1926 Phys. Rev. 28 4
[28] Bernstein I B, Rabinowitz I 1959 Phys. Fluids 2 2
[29] Laframboise J G 1966 University of Toronto, Institute for Aerospace Studies, UTIAS Report No. 100
[30] Chen F F 1965 Plasma Phys. 7 1
[31] 买胜利, 王立, 李凯, 秦晓刚 2006 真空与低温 12 2
Mai S L, Wang L, Li K, Qin X G 2006 Vac. Cryogenics 12 2
[32] 王思展 2019 科技与创新 8 14
Wang S Z 2019 Sci. Technol. Innov. 8 14
[33] 王思展, 黄建国, 姜利祥, 王军伟 2019 环境技术 4 18
Wang S Z, Huang J G, Jiang L X, Wang J W 2019 Environ. Technol. 4 18
[34] 陈益峰, 杨生胜, 李得天, 秦晓刚, 史亮, 冯娜 2014 现代应用物理 5 3
Chen Y F, Yang S S, Li D T, Qin X G, Shi L, Feng N 2014 Mod. Appl. Phys. 5 3
[35] 杨集, 陈贤祥, 周杰, 夏善红 2010 宇航学报 31 531Google Scholar
Yang J, Chen X X, Zhou J, Xia S H 2010 J. Astronautics 31 531Google Scholar
计量
- 文章访问数: 8460
- PDF下载量: 115
- 被引次数: 0