-
根据Drude模型在理论上计算了太赫兹(THz)波段二维黑磷(2D BP)在扶手椅方向(X )和锯齿方向(Y )上电导率随频率的色散及吸收. 发现2D BP在X和Y两个方向上电导率不同, 从而导致了其介电常数的不同, 进而可以对不同偏振方向的THz波起到不同的调制作用. 利用2D BP对THz波具有偏振依赖的特性, 设计了2D BP-SiO2三明治周期结构, 通过三维电磁场仿真软件CST Microwave Studio计算了这种结构对THz波的调控特性, 研究发现, 这种结构对不同偏振方向入射的THz波有不同的吸收; 改变结构中底层SiO2层的厚度, 结构的吸收率也发生了相应的变化. 基于此, 研究提出了这种结构对偏振平行于2D BP扶手椅方向和锯齿方向的THz脉冲有最大吸收率差时的底层SiO2层厚度. 结果表明这种结构可以用于设计新型结构紧凑的THz吸收器和偏振器.Using the Delude model. we theoretically calculate the dispersion of conductivity with frequency in the orthogonal direction of the two-dimensional black phosphorus (2D BP) x and y direction in the THz band. We find that the conductivity in the x direction is more sensitive to the electron doping concentration. The difference between 2D BP conductivities in both directions leads to the difference in dielectric constant which in turn can modulate light in different polarization directions. Using 2D BP to polarize the THz wave, the 2D BP-SiO2 periodic sandwich structure is designed. The three-dimensional electromagnetic field simulation software CST Microwave Studio can be used to calculate the regulation characteristics of this structure to THz wave. It is found that this structure has different polarization directions, and the incident THz wave has different absorption. By changing the thickness of the underlying SiO2 layer in the structure it is found that the absorption rate of this structure also changes accordingly. When the polarization direction of the THz pulse is parallel to the x axis, the absorption rate first increases and then decreases. When d5 = 9.5 μm, the absorption rate reaches 93% near 3.86 THz; when the polarization direction of the THz pulse is parallel to the y axis, the absorption rate gradually increases. The absorption peak has a significant red shift.
-
Keywords:
- black phosphorus /
- polarization /
- THz
[1] Asahina H, Shindo K, Morita A 1982 Phys. Soc. Jpn. 51 1193Google Scholar
[2] Viti L, Hu J, Coquillat D, et al. 2015 Adv. Mater. 27 5567Google Scholar
[3] Bridgman P 1914 JACS 36 1344Google Scholar
[4] Li S, Zhang Y, Wen W, et al. 2019 Biosens. Bioelectron. 133 223Google Scholar
[5] Zhao J, Zhu J, Cao R 2019 Nat. Commun. 10 4062Google Scholar
[6] Bolognesi M, Brucale M, Lorenzoni A, et al. 2019 Nat. Nanotechnol. 11 17252Google Scholar
[7] Izquierdo N, Myers Jason C, Seaton Nicholas C A 2019 ACS Nano 13 7091Google Scholar
[8] Wang J, Jiang Y, Hu Z 2017 Opt. Express 25 22149Google Scholar
[9] Jimin K, Seung S B, Sung W J 2017 Phys. Rev. Lett. 119 226801Google Scholar
[10] Liu X, Lee M A, Sungjo P 2019 ACS Appl. Mater. Inter. 11 23558Google Scholar
[11] Li L, Yang F, Ye G J 2016 Nat. Nanotechnol. 10 593Google Scholar
[12] Liu X, Wood Joshua D, Chen K 2015 J. Phys. Chem. Lett. 9 773Google Scholar
[13] Wang H, Zhang X, Xie Y 2018 ACS Nano 12 9648Google Scholar
[14] Favron A, Gaufrès E, Fossard F, et al. 2015 Nat. Mater. 14 826Google Scholar
[15] Ling X, Wang H, Huang S, et al. 2015 PNAS 112 4523Google Scholar
[16] Wang X, Jones A M, Seyler K L 2015 Nat. Nanotechnol. 10 517Google Scholar
[17] Low T, Roldán R, Wang H, et al. 2014 Phys. Rev. Lett. 113 106802Google Scholar
[18] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar
[19] Rodin A, Carvalho A, Neto A C S 2014 Phys. Rev. Lett. 112 176801Google Scholar
-
-
[1] Asahina H, Shindo K, Morita A 1982 Phys. Soc. Jpn. 51 1193Google Scholar
[2] Viti L, Hu J, Coquillat D, et al. 2015 Adv. Mater. 27 5567Google Scholar
[3] Bridgman P 1914 JACS 36 1344Google Scholar
[4] Li S, Zhang Y, Wen W, et al. 2019 Biosens. Bioelectron. 133 223Google Scholar
[5] Zhao J, Zhu J, Cao R 2019 Nat. Commun. 10 4062Google Scholar
[6] Bolognesi M, Brucale M, Lorenzoni A, et al. 2019 Nat. Nanotechnol. 11 17252Google Scholar
[7] Izquierdo N, Myers Jason C, Seaton Nicholas C A 2019 ACS Nano 13 7091Google Scholar
[8] Wang J, Jiang Y, Hu Z 2017 Opt. Express 25 22149Google Scholar
[9] Jimin K, Seung S B, Sung W J 2017 Phys. Rev. Lett. 119 226801Google Scholar
[10] Liu X, Lee M A, Sungjo P 2019 ACS Appl. Mater. Inter. 11 23558Google Scholar
[11] Li L, Yang F, Ye G J 2016 Nat. Nanotechnol. 10 593Google Scholar
[12] Liu X, Wood Joshua D, Chen K 2015 J. Phys. Chem. Lett. 9 773Google Scholar
[13] Wang H, Zhang X, Xie Y 2018 ACS Nano 12 9648Google Scholar
[14] Favron A, Gaufrès E, Fossard F, et al. 2015 Nat. Mater. 14 826Google Scholar
[15] Ling X, Wang H, Huang S, et al. 2015 PNAS 112 4523Google Scholar
[16] Wang X, Jones A M, Seyler K L 2015 Nat. Nanotechnol. 10 517Google Scholar
[17] Low T, Roldán R, Wang H, et al. 2014 Phys. Rev. Lett. 113 106802Google Scholar
[18] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar
[19] Rodin A, Carvalho A, Neto A C S 2014 Phys. Rev. Lett. 112 176801Google Scholar
计量
- 文章访问数: 7129
- PDF下载量: 153
- 被引次数: 0