搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率全光纤1.6微米类噪声方形脉冲激光器

窦志远 张斌 刘帅林 侯静

引用本文:
Citation:

高功率全光纤1.6微米类噪声方形脉冲激光器

窦志远, 张斌, 刘帅林, 侯静

High-power 1.6 μm noise-like square pulse generation in an all-fiber mode-locked laser

Dou Zhi-Yuan, Zhang Bin, Liu Shuai-Lin, Hou Jing
PDF
HTML
导出引用
  • 报道了一种工作波长在1.6 μm的哑铃形结构高功率铒镱共掺全光纤锁模激光器. 无隔离器结构设计以及大模面积双包层铒镱共掺光纤的使用, 使振荡器可稳定高效地工作于较高泵浦功率下. 证明了不同带内吸收系数的铒镱共掺光纤对输出波长有极其重要的影响, 带内吸收调控可作为一种有效的波长控制方法. 实验中, 利用高带内吸收光纤获得了稳定的1.6 μm高功率、大能量纳秒类噪声方形脉冲输出, 最大平均输出功率和单脉冲能量分别为1.16 W和1.26 μJ. 同时研究了附加插入损耗对所设计激光器输出特性的影响, 当总附加插入损耗为10 dB时, 激光器仍然可以稳定发射1.6 μm类噪声方形脉冲, 说明利用高带内吸收系数的铒镱共掺光纤设计的激光器对1.6 μm输出波长具备极强的鲁棒性. 对于过大的附加插入损耗, 1.6 μm输出波长会被完全抑制.
    We demonstrate generation of high-power and large-energy noise-like square pulses at 1612 nm in an all-fiber dumbbell-shaped mode-locked Er: Yb co-doped double-clad fiber (EYDF) laser. The custom couplers with high power handling keep the laser function well. Large-mode-area EYDF with high power handling and enough high pump power make it possible to obtain high output power in the oscillator. Compared with figure-eight structure, strictly all-fiber dumbbell-shaped structure without isolator and optimizing splicing loss could reduce intra-cavity loss and improve optical to optical efficiency, which could reduce heat accumulation and enhance the power carrying capacity of EYDF. In order to study the influence of in-band absorption on output wavelength, EYDF1 and EYDF2 with different in-band absorption coefficients are accessed to intracavity, respectively. It is directly demonstrated that regulation of in-band absorption is an effective way to control the output wavelength. Strong in-band absorption could restrain the emission of C-band and make the wavelength range above 1.6 μm obtain enough gain. Linear insertion loss is another important factor to affect the emission wavelength in EYDF fiber laser. At pump power of 8 W, maximum average output power with emission wavelength above 1.6 μm can reach 1.16 W, corresponding to a single pulse energy of 1.26 μJ. SNR of output pulse is 70 dB which indicates the high stability of mode-locking. In order to verify and evaluate influence of insertion loss on the output characteristics of mode-locked laser, a variable attenuator is inserted in experimental setup, allowing us adjust the linear loss of the cavity. By increasing pump power and adjusting PCs, mode-locked pulses could be obtained on the condition of large additional insertion loss. Even though ~ 10 dB additional insertion loss is introduced, the oscillation still could function at 1612 nm and keep stable mode-locked state. This result demonstrates our oscillation could bear strong additional loss and own strong robustness. If excessively large additional insertion loss is added, 1566 nm becomes the central emission wavelength and wavelength component at 1612 nm almost disappears. Our investigation supplies a direct guideline to design high-power fiber laser with emission wavelength above 1.6 μm.
      通信作者: 侯静, houjing25@sina.com
      Corresponding author: Hou Jing, houjing25@sina.com
    [1]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 物理学报 67 094207Google Scholar

    Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar

    [4]

    张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 物理学报 68 234204Google Scholar

    Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar

    [5]

    王富任, 王天枢, 马万卓, 贾青松, 赵得胜, 刘润民 2019 应用光学 40 0710Google Scholar

    Wang F R, Wang T S, Ma W Z, Jia Q S, Zhao D S, Liu R M 2019 Journal of Applied Optics 40 0710Google Scholar

    [6]

    Zheng Y, Tian J R, Dong Z K, Xu R Q, Li K X, Song Y R 2017 Chinese Phys. B 26 074212Google Scholar

    [7]

    Liu W, Liu M, Liu X, Wang X, Teng H, Lei M, Wei Z, Wei Z 2020 Appl. Phys. Lett. 116 061901Google Scholar

    [8]

    Morin F, Druon F, Hanna M, Georges P 2009 Opt. Lett. 34 1991Google Scholar

    [9]

    Huang Q, Zou C, Wang T, Araimi M A, Rozhin A, Mou C 2018 Chinese Phys. B 27 094210Google Scholar

    [10]

    Kang J, Kong C, Feng P, Wei X, Luo Z C, Lam E Y, Wong K K Y 2018 IEEE Photon. Technol. Lett. 30 311Google Scholar

    [11]

    Wang Z, Zhan L, Fang X, Gao C, Qian K 2016 J. Lightwave Technol. 34 4128Google Scholar

    [12]

    Dong X, Shum P, Ngo N Q, Chan C C, Guan B O, Tam H Y 2003 Opt. Express 11 3622Google Scholar

    [13]

    Dong X, Shum P, Ngo N Q, Tam H Y, Dong X 2005 J. Lightwave Technol. 23 1334Google Scholar

    [14]

    贾浩天, 王军利, 滕浩, 吕志国, 刘文军, 魏志义 2016 中国激光 43 1101008Google Scholar

    Jia H T, Wang J L, Teng H, Lv Z G, Liu W J, Wei Z Y 2016 Chinese Journal of Lasers 43 1101008Google Scholar

    [15]

    Guesmi K, Meng Y, Niang A, Mouchel P, Salhi M, Bahloul F, Attia R, Sanchez F 2014 Opt. Lett. 39 6383Google Scholar

    [16]

    Meng Y, Niang A, Guesmi K, Salhi M, Sanchez F 2014 Opt. Express 22 29921Google Scholar

    [17]

    Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z, Sanchez F 2015 Opt. Express 23 23053Google Scholar

    [18]

    Yan D, Li X, Zhang S, Han M, Han H, Yang Z 2016 Opt. Express 24 739Google Scholar

    [19]

    窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 物理学报 64 064206Google Scholar

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar

    [20]

    Li D, Shen D, Li L, Tang D, Su L, Zhao L 2018 Opt. Lett. 43 1222Google Scholar

    [21]

    Zheng Z, Ouyang D, Ren X, Wang J, Pei J, Ruan S 2019 Photon. Res. 7 513Google Scholar

    [22]

    Du T, Li W, Ruan Q, Wang K, Chen N, Luo Z 2018 Appl. Phys. Express 11 052701Google Scholar

    [23]

    Zheng X W, Luo Z C, Liu H, Zhao N, Ning Q Y, Liu M, Feng X H, Xing X B, Luo A P, Xu W C 2014 Appl. Phys. Express 7 042701Google Scholar

    [24]

    Jeong Y, Vazquezzuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar

    [25]

    Zhao K, Wang P, Ding Y, Yao S, Gui L, Xiao X, Yang C 2019 Appl. Phys. Express 12 012002Google Scholar

    [26]

    陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002

    Chen J W, Zhao L M 2017 Laser & Optoelectronics Progress 54 110002

    [27]

    金鑫鑫, 李雷, 罗娇林, 葛颜绮, 张倩, 赵鹭明 2015 激光与光电子学进展 52 121902

    Jin X X, Li L, Luo J L, Ge Y Q, Zhang Q, Zhao L M 2015 Laser & Optoelectronics Progress 52 121902

  • 图 1  哑铃形全光纤EYDF激光器结构示意图

    Fig. 1.  Experiment setup of dumbbell-shaped all-fiber mode-locked EYDF fiber laser.

    图 2  对应EYDF1和EYDF2的放大自发辐射和连续光输出光谱

    Fig. 2.  The output optical spectra of ASE and CW of EYDF1 and EYDF2.

    图 3  对应EYDF1的输出脉冲 (a)时域、(b)光谱演化过程; (c)一次谐波射频谱和100 MHz范围的射频谱(插图); (d) 50 ps范围的自相关迹和5 ps自相关迹(插图);对应EYDF2的输出脉冲的(e)时域、(f)光谱演化过程

    Fig. 3.  (a) Output pulse waveforms, and (b) optical spectra evolution at different pump power of EYDF1; (c) autocorrelation trace over a 50 ps span for EYDF1 (the inset shows the autocorrelation trace with 5 ps span); (d) RF spectrum at the fundamental frequency for EYDF1 (the inset shows broadband RF spectra with 100 MHz span); (e) output pulse waveforms, and (f) optical spectra evolution at different pump power of EYDF2.

    图 4  对应EYDF1和EYDF2的输出功率与峰值功率随泵浦功率的变化曲线

    Fig. 4.  Output power and peak power versus pump power.

    图 5  (a)不同插入损耗下的输出光谱; 不同插入损耗下(b)输出功率、(c)脉冲宽度和(d)峰值功率随泵浦功率的变化曲线

    Fig. 5.  (a) Output spectra at different at different additional insertion loss; (b) average output power, (c) pulse duration and peak power versus pump power at different additional insertion loss.

  • [1]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photon. 7 684Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和 2018 物理学报 67 094207Google Scholar

    Ma J D, Wu H Y, Lu Q, Ma T, Shi L, Sun Q, Mao Q H 2018 Acta Phys. Sin. 67 094207Google Scholar

    [4]

    张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 物理学报 68 234204Google Scholar

    Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar

    [5]

    王富任, 王天枢, 马万卓, 贾青松, 赵得胜, 刘润民 2019 应用光学 40 0710Google Scholar

    Wang F R, Wang T S, Ma W Z, Jia Q S, Zhao D S, Liu R M 2019 Journal of Applied Optics 40 0710Google Scholar

    [6]

    Zheng Y, Tian J R, Dong Z K, Xu R Q, Li K X, Song Y R 2017 Chinese Phys. B 26 074212Google Scholar

    [7]

    Liu W, Liu M, Liu X, Wang X, Teng H, Lei M, Wei Z, Wei Z 2020 Appl. Phys. Lett. 116 061901Google Scholar

    [8]

    Morin F, Druon F, Hanna M, Georges P 2009 Opt. Lett. 34 1991Google Scholar

    [9]

    Huang Q, Zou C, Wang T, Araimi M A, Rozhin A, Mou C 2018 Chinese Phys. B 27 094210Google Scholar

    [10]

    Kang J, Kong C, Feng P, Wei X, Luo Z C, Lam E Y, Wong K K Y 2018 IEEE Photon. Technol. Lett. 30 311Google Scholar

    [11]

    Wang Z, Zhan L, Fang X, Gao C, Qian K 2016 J. Lightwave Technol. 34 4128Google Scholar

    [12]

    Dong X, Shum P, Ngo N Q, Chan C C, Guan B O, Tam H Y 2003 Opt. Express 11 3622Google Scholar

    [13]

    Dong X, Shum P, Ngo N Q, Tam H Y, Dong X 2005 J. Lightwave Technol. 23 1334Google Scholar

    [14]

    贾浩天, 王军利, 滕浩, 吕志国, 刘文军, 魏志义 2016 中国激光 43 1101008Google Scholar

    Jia H T, Wang J L, Teng H, Lv Z G, Liu W J, Wei Z Y 2016 Chinese Journal of Lasers 43 1101008Google Scholar

    [15]

    Guesmi K, Meng Y, Niang A, Mouchel P, Salhi M, Bahloul F, Attia R, Sanchez F 2014 Opt. Lett. 39 6383Google Scholar

    [16]

    Meng Y, Niang A, Guesmi K, Salhi M, Sanchez F 2014 Opt. Express 22 29921Google Scholar

    [17]

    Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z, Sanchez F 2015 Opt. Express 23 23053Google Scholar

    [18]

    Yan D, Li X, Zhang S, Han M, Han H, Yang Z 2016 Opt. Express 24 739Google Scholar

    [19]

    窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 物理学报 64 064206Google Scholar

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar

    [20]

    Li D, Shen D, Li L, Tang D, Su L, Zhao L 2018 Opt. Lett. 43 1222Google Scholar

    [21]

    Zheng Z, Ouyang D, Ren X, Wang J, Pei J, Ruan S 2019 Photon. Res. 7 513Google Scholar

    [22]

    Du T, Li W, Ruan Q, Wang K, Chen N, Luo Z 2018 Appl. Phys. Express 11 052701Google Scholar

    [23]

    Zheng X W, Luo Z C, Liu H, Zhao N, Ning Q Y, Liu M, Feng X H, Xing X B, Luo A P, Xu W C 2014 Appl. Phys. Express 7 042701Google Scholar

    [24]

    Jeong Y, Vazquezzuniga L A, Lee S, Kwon Y 2014 Opt. Fiber Technol. 20 575Google Scholar

    [25]

    Zhao K, Wang P, Ding Y, Yao S, Gui L, Xiao X, Yang C 2019 Appl. Phys. Express 12 012002Google Scholar

    [26]

    陈家旺, 赵鹭明 2017 激光与光电子学进展 54 110002

    Chen J W, Zhao L M 2017 Laser & Optoelectronics Progress 54 110002

    [27]

    金鑫鑫, 李雷, 罗娇林, 葛颜绮, 张倩, 赵鹭明 2015 激光与光电子学进展 52 121902

    Jin X X, Li L, Luo J L, Ge Y Q, Zhang Q, Zhao L M 2015 Laser & Optoelectronics Progress 52 121902

  • [1] 贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 低重复频率被动锁模半导体碟片激光器. 物理学报, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [3] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [4] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [5] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [6] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [7] 张攀政, 汪小超, 李菁辉, 冯滔, 张志祥, 范薇, 周申蕾, 马伟新, 朱俭, 林尊琪. 利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器. 物理学报, 2016, 65(21): 214207. doi: 10.7498/aps.65.214207
    [8] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [9] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [10] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [11] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器. 物理学报, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [12] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [13] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [14] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [15] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [16] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究. 物理学报, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [17] 林宏奂, 卢振华, 王建军, 张 颖, 王凤蕊, 许党朋, 张 锐, 李明中, 邓青华, 罗亦鸣, 唐 军, 丁 磊. 正色散激光器中的增益导引孤子. 物理学报, 2008, 57(9): 5646-5650. doi: 10.7498/aps.57.5646
    [18] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [19] 朱振和. 脉冲主被动锁模固体激光器的理论计算(Ⅱ)——计算机模拟. 物理学报, 1985, 34(5): 611-621. doi: 10.7498/aps.34.611
    [20] 朱振和. 脉冲主被动锁模固体激光器的理论计算(Ⅰ)——理论模型. 物理学报, 1985, 34(5): 603-610. doi: 10.7498/aps.34.603
计量
  • 文章访问数:  8349
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-04-13
  • 上网日期:  2020-05-20
  • 刊出日期:  2020-08-20

/

返回文章
返回