搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能

刘迪 王静 王俊升 黄厚兵

引用本文:
Citation:

相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能

刘迪, 王静, 王俊升, 黄厚兵

Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films

Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing
PDF
HTML
导出引用
  • 外延生长铁电薄膜中基底失配应变能够调控微观铁电畴结构和宏观铁电性能. 本文选择了三种相结构(四方相、四方和菱方混合相、菱方相) PbZr(1–x)TixO3 (x = 0.8, 0.48, 0.2)铁电薄膜, 利用相场模拟研究了在不同基底失配应变(εsub)作用下, 三种成分铁电薄膜中微观畴结构的演化以及宏观极化-电场回线. 随着应变从–1.0%变化到1.0%, 三种相结构铁电薄膜的矫顽场、饱和极化值以及剩余极化值全都降低, 其中PbZr0.52Ti0.48O3薄膜的饱和极化值和剩余极化值比另外两种薄膜降低更快. 模拟结果表明拉应变能提高铁电薄膜储能效率, 其中准同型相界处应变提升储能效率最快. 本工作揭示了应变对PbZr(1–x)TixO3铁电薄膜中畴结构、电滞回线以及储能等方面的影响, 为铁电功能薄膜材料的实验设计提供了理论基础.
    Ferroelectric domain structures and ferroelectric properties in the hetero-epitaxially constrained ferroelectric thin films can be manipulated by substrate misfit strain. In this work, three kinds of phase structures of PbZr(1–x)TixO3 thin films, including tetragonal, tetragonal- rhombohedral-mixed and rhombohedral phases, are investigated. Firstly, the ferroelectric domain structures at different substrate misfit biaxial strains are obtained by the phase-field simulation. Then we calculate the polarization-electric field hysteresis loops at different misfit strains, and obtain the coercive field, saturation polarization, and remnant polarization. In the tetragonal PbZr(1–x)TixO3 (x = 0.8) thin film, compressive strain contributes to the formation of out-of-plane c1/c2 domain, and tensile strain favors in-plane a1/a2 domain formation. With the increase of compressive strain, the tetragonal phase and the rhombohedral phase coexist in PbZr(1–x)TixO3 (x = 0.48) film near the morphotropic phase boundary, while the tensile strain reduces the rhombohedral domain size. In the rhombohedral PbZr(1–x)TixO3 (x = 0.2) film, the rhombohedral domains are steady states under compressive strain and tensile strain. As the misfit strain changes from –1.0% to 1.0%, the value of the coercive field, saturation polarization and remnant polarization decrease. Among them, for tetragonal-rhombohedral mixed phase, the reductions of saturation field and remnant polarization are larger than for tetragonal phase and rhombohedral phase. The coercive field of mixed phase decreases rapidly under the compressive strain, but deceases slowly under the tensile strain. It is worth noting that the remnant polarization decreases faster than the saturation polarization in three components of ferroelectric thin film. Due to the electromechanical coupling, when x = 0.48 at the morphotropic phase boundary it is shown that the remnant polarization reduction is faster than those of the other two types of ferroelectric thin films, and the small coercive field is obtained in the case of large tensile strain. Therefore, tensile strain can effectively improve the energy storage efficiency in ferroelectric thin films, and the efficiency of x = 0.48 thin film increases significantly compared with that of x = 0.8 or 0.2 thin film. Both the ratio of rhombohedral/tetragonal phase and the domain size will play a significant role in ferroelectric performance. Therefore, our results contribute to the understanding of the electromechanical coupling mechanism of PbZr(1–x)TixO3, and provide guidance for the experimental design of ferroelectric functional thin film materials.
      通信作者: 黄厚兵, hbhuang@bit.edu.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2019YFA0307900)
      Corresponding author: Huang Hou-Bing, hbhuang@bit.edu.cn
    [1]

    Xu F, Trolier-McKinstry S, Ren W, Xu B, Xie Z L, Hemker K J 2001 J. Appl. Phys. 89 1336Google Scholar

    [2]

    Kim D J, Maria J P, Kingon A I, Streiffer S K 2003 J. Appl. Phys. 93 5568Google Scholar

    [3]

    Karthik J, Martin L 2011 Phys. Rev. B 84 024102Google Scholar

    [4]

    Karthik J, Damodaran A R, Martin L W 2012 Phys. Rev. Lett. 108 167601Google Scholar

    [5]

    赵晓英, 刘世建, 褚君浩, 戴宁, 胡古今 2008 物理学报 57 5968Google Scholar

    Zhao X Y, Liu S J, Chu J H, Dai N, Hu G J 2008 Acta Phys. Sin. 57 5968Google Scholar

    [6]

    Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823Google Scholar

    [7]

    Ganapathi K L, Rath M, Rao M S R 2019 Semicond. Sci. Technol. 34 055016Google Scholar

    [8]

    Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S H 2019 Nano Energy 55 182Google Scholar

    [9]

    Hoshyarmanesh H, Ebrahimi N, Jafari A, Hoshyarmanesh P, Kim M, Park H H 2019 Sensors 19 13Google Scholar

    [10]

    Gupta R, Gupta V, Tomar M 2020 Mater. Sci. Semicond. Process. 105 104723Google Scholar

    [11]

    Rath M, Varadarajan E, Premkumar S, Shinde S, Natarajan V, Rao M S R 2019 Ferroelectrics 551 17Google Scholar

    [12]

    Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X 2017 Adv. Mater. 29 1601727Google Scholar

    [13]

    Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [14]

    Wang J J, Su Y J, Wang B, Ouyang J, Ren Y, Chen L Q 2020 Nano Energy 72 104665Google Scholar

    [15]

    Li A D, Mak C L, Wong K H, Shao Q Y, Wang Y J, Wu D, Ming N B 2002 J. Cryst. Growth 235 307Google Scholar

    [16]

    Ehara Y, Shimizu T, Yasui S, Oikawa T, Shiraishi T, Tanaka H, Kanenko N, Maran R, Yamada T, Imai Y Sakata O, Valanoor N, Funakubo H 2019 Phys. Rev. B 100 104116Google Scholar

    [17]

    Izyumskaya N, Alivov Y I, Cho S J, Morkoç H, Lee H, Kang Y S 2007 Crit. Rev. Solid. State Mater. Sci. 32 111Google Scholar

    [18]

    Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar

    [19]

    Noguchi Y, Maki H, Kitanaka Y, Matsuo H, Miyayama M 2018 Appl. Phys. Lett. 113 012903Google Scholar

    [20]

    Li Y L, Chen L Q 2006 Appl. Phys. Lett. 88 072905Google Scholar

    [21]

    Pertsev N A, Tagantsev A K, Setter N 2000 Phys. Rev. B 61 R825Google Scholar

    [22]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [23]

    Zhang J X, Li Y L, Choudhury S, Chen L Q, Chu Y H, Zavaliche F, Cruz M P, Ramesh R, Jia Q X 2008 J. Appl. Phys. 103 094111Google Scholar

    [24]

    Ren W, Yang Y, Diéguez O, Íñiguez J, Choudhury N, Bellaiche L 2013 Phys. Rev. Lett. 110 187601Google Scholar

    [25]

    Zhang Y, Xue F, Chen Z H, Liu J M, Chen L Q 2020 Acta Mater. 183 110Google Scholar

    [26]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [27]

    Li Y L, Hu S Y, Chen L Q 2005 J. Appl. Phys. 97 034112Google Scholar

    [28]

    Yu Q, Li J, Zhu F, Li J 2014 J. Mater. Chem. C 2 5836Google Scholar

    [29]

    Lu X Y, Chen Z H, Cao Y, Tang Y L, Xu R J, Saremi S, Zhang Z, You L, Dong Y Q, Das S, Zhang H B, Zheng L M, Wu H P, Lv W M, Xie G Q, Liu X J, Li J Y, Chen L, Chen L Q, Cao W W, Martin L W 2019 Nat. Commun. 10 3951Google Scholar

    [30]

    Nguyen M D, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G 2011 Appl. Phys. Lett. 99 252904Google Scholar

    [31]

    Xue F, Wang J J, Sheng G, Huang E, Cao Y, Huang H-H, Munroe P, Mahjoub R, Li Y, Valanoor N, Chen L 2013 Acta Mater. 61 2909Google Scholar

    [32]

    Lin F Y, Cheng X, Chen L Q, Sinnott S B 2018 J. Am. Ceram. Soc. 101 4783Google Scholar

    [33]

    Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar

    [34]

    Chen L Q 2008 J. Am. Ceram. Soc. 91 1835Google Scholar

    [35]

    Chen L Q 2002 Ann. Rev. Mater. Res. 32 113Google Scholar

    [36]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2001 Appl. Phys. Lett. 78 3878Google Scholar

    [37]

    Li Y L, Choudhury S, Liu Z K, Chen L Q 2003 Appl. Phys. Lett. 83 1608Google Scholar

    [38]

    Shu W L, Wang J, Zhang T Y 2012 J. Appl. Phys. 112 064108Google Scholar

    [39]

    Wang J J, Wang B, Chen L Q 2019 Ann. Rev. Mater. Res. 49 127Google Scholar

    [40]

    Li Y L, Chen L Q, Asayama G, Schlom D G, Zurbuchen M A, Streiffer S K 2004 J. Appl. Phys. 95 6332Google Scholar

    [41]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

    [42]

    Haun M J, Zhuang Z Q, Furman E, Jang S J, Cross L E 1989 Ferroelectrics 99 45Google Scholar

    [43]

    Hu H L, Chen L Q 1998 J. Am. Ceram. Soc. 81 492

    [44]

    Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar

    [45]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [46]

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R, Zhang S J 2018 Nat. Mater. 17 349Google Scholar

    [47]

    Liao Z Y, Xue F, Sun W, Song D S, Zhang Q Q, Li J F, Chen L Q, Zhu J 2017 Phys. Rev. B 95 214101Google Scholar

    [48]

    Liu H, Chen J, Huang H B, Fan L L, Ren Y, Pan Z, Deng J X, Chen L Q, Xing X R 2018 Phys. Rev. Lett. 120 055501Google Scholar

    [49]

    Ma Z, Ma Y, Chen Z, Zheng F, Gao H, Liu H, Chen H 2018 Ceram. Int. 44 4338Google Scholar

  • 图 1  PZT铁电材料的晶体结构示意图 (a)立方顺电相结构; (b)四方铁电相结构; (c)正交铁电相结构; (d)菱方铁电相结构

    Fig. 1.  Schematic of PZT ferroelectric structure: (a) Paraelectric cubic phase; (b) ferroelectric tetragonal phase; (c) ferroelectric orthorhombic phase; (d) ferroelectric rhombohedral phase.

    图 2  (a)−(f)室温下随Ti成分降低(x = 0.8—0.2) PZT的三维自由能曲面, 蓝色代表最小值, 红色代表最大值; (g)−(i) T相、R/T混合相及R相二维自由能双势阱示意图

    Fig. 2.  (a)−(f) Free energy surface of PZT with the decrease of Ti composition (x = 0.8–0.2) at room temperature. Blue and red color represents the minimum and maximum value respectively; (g)−(i) Schematic of double well potential of tetragonal phase (g), mixed phase (h) and rhombohedral phase (i).

    图 3  相场模拟PZT薄膜在不同基底失配应变下的畴结构 (a)—(c)分别对应于PZT (x = 0.8)薄膜εsub = 0, εsub = –0.5%, εsub = 0.5%; (d)—(f)分别对应于PZT (x = 0.48)薄膜εsub = 0, εsub = –0. 5%, εsub = 0.5%; (g)—(h)分别对应于PZT (x = 0.2)薄膜εsub = 0, εsub = –0.5%, εsub = 0.5%

    Fig. 3.  Domain structures of PZT (x = 0.8, x = 0.48, x = 0.2) thin film with different substrate biaxial misfit strain (εsub = 0, εsub = –0.5%, εsub = 0.5%): (a)−(c) Domain structures of PZT (x = 0.8) thin films at εsub = 0, εsub = –0.5%, εsub = 0.5%; (d)−(f) domain structures of PZT (x = 0.48) thin films at εsub = 0, εsub = –0.5%, εsub = 0.5%; (g)−(h) domain structures of PZT (x = 0.2) thin films at εsub = 0, εsub = –0.5%, εsub = 0.5%.

    图 4  室温下PZT铁电薄膜四方相(x = 0.8), 混合相(x = 0.48)以及菱方相(x = 0.2)在不同的基底失配应变下(εsub = ± 0.1%, ± 0.5%, ± 1.0%)的电滞回线, 其中P *E *表示归一化后的极化强度和电场强度值 (a)−(c)分别表示压应变下四方相、混合相和菱方相的电滞回线; (d)−(f)分别表示拉应变下四方相、混合相和菱方相的电滞回线

    Fig. 4.  Hysteresis loops of PZT thin films with three Ti components at different substrate biaxial misfit strains (εsub = ± 0.1%, ± 0.5%, ± 1.0%), and P * and E * are normalized polarization and electric field: (a)−(c) The case of compressive strains; (d)−(f) the case of tensile strains.

    图 5  三种相PZT铁电薄膜的矫顽场、饱和极化和剩余极化值与基底应变的关系 (a) 矫顽场Ec*; (b) 饱和极化值Ps*; (c) 剩余极化值Pr*

    Fig. 5.  Normalized coercive field (Ec*), saturation polarization (Pr*), and remnant polarization (Ps*) as a function of substrate misfit strain (εsub), where three PZT ferroelectric thin films with x = 0.8, 0.48 and 0.2 Ti component are considered: (a) Coercive field vs. strain; (b) saturation polarization vs. strain; (c) remnant polarization vs. strain.

    图 6  (a)电滞回线中充放电过程中储能示意图; (b) 三种PZT薄膜材料能量存储效率与基底应变之间的关系

    Fig. 6.  (a) Schematic of P-E loop used for energy storage; (b) the energy storage efficiency as a function of substrate misfit strain.

    表 1  三种成分PZT铁电薄膜介电刚度系数和电致伸缩常数

    Table 1.  Corresponding material constants for the Landau free energy, the electrostrictive coefficients of three components PZT thin films.

    CoefficientsPbZr0.2Ti0.8O3PbZr0.52Ti0.48O3PbZr0.8Ti0.2O3
    $ {a}_{1} $/C–2·m2·N3.44 × 105(T – 456.38)1.45 × 105(T – 387.06)2.71 × 105(T – 300.57)
    $ {a}_{11} $/C–4·m6·N–3.05 × 1075.83 × 1073.13 × 108
    $ {a}_{12} $/C–4·m6·N6.32 × 1081.82 × 108–3.45 × 106
    $ {a}_{111} $/C–6·m10·N2.47 × 1081.50 × 1084.29 × 108
    $ {a}_{112} $/C–6·m10·N9.68 × 1086.88 × 1081.81 × 109
    $ {a}_{123} $/C–6·m10·N–4.90 × 109–3.24 × 109–7.54 × 109
    $ {Q}_{11} $/C–2·m40.0810.0940.056
    $ {Q}_{12} $/C–2·m4–0.024–0.044–0.017
    $ {Q}_{44} $/C–2·m40.0320.0400.026
    下载: 导出CSV

    表 2  三种PZT薄膜材料在不同应变下的储能效率值η

    Table 2.  Energy storage efficiency values of the PZT thin films under different strains.

    Strain/%Energy storage efficienc η/%
    PbZr0.2Ti0.8O3PbZr0.52Ti0.48O3PbZr0.8Ti0.2O3
    –1.08.07.811.2
    –0.512.017.418.7
    –0.116.831.023.4
    0.120.040.627.4
    0.530.761.034.7
    1.043.973.655.8
    下载: 导出CSV
  • [1]

    Xu F, Trolier-McKinstry S, Ren W, Xu B, Xie Z L, Hemker K J 2001 J. Appl. Phys. 89 1336Google Scholar

    [2]

    Kim D J, Maria J P, Kingon A I, Streiffer S K 2003 J. Appl. Phys. 93 5568Google Scholar

    [3]

    Karthik J, Martin L 2011 Phys. Rev. B 84 024102Google Scholar

    [4]

    Karthik J, Damodaran A R, Martin L W 2012 Phys. Rev. Lett. 108 167601Google Scholar

    [5]

    赵晓英, 刘世建, 褚君浩, 戴宁, 胡古今 2008 物理学报 57 5968Google Scholar

    Zhao X Y, Liu S J, Chu J H, Dai N, Hu G J 2008 Acta Phys. Sin. 57 5968Google Scholar

    [6]

    Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823Google Scholar

    [7]

    Ganapathi K L, Rath M, Rao M S R 2019 Semicond. Sci. Technol. 34 055016Google Scholar

    [8]

    Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S H 2019 Nano Energy 55 182Google Scholar

    [9]

    Hoshyarmanesh H, Ebrahimi N, Jafari A, Hoshyarmanesh P, Kim M, Park H H 2019 Sensors 19 13Google Scholar

    [10]

    Gupta R, Gupta V, Tomar M 2020 Mater. Sci. Semicond. Process. 105 104723Google Scholar

    [11]

    Rath M, Varadarajan E, Premkumar S, Shinde S, Natarajan V, Rao M S R 2019 Ferroelectrics 551 17Google Scholar

    [12]

    Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X 2017 Adv. Mater. 29 1601727Google Scholar

    [13]

    Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [14]

    Wang J J, Su Y J, Wang B, Ouyang J, Ren Y, Chen L Q 2020 Nano Energy 72 104665Google Scholar

    [15]

    Li A D, Mak C L, Wong K H, Shao Q Y, Wang Y J, Wu D, Ming N B 2002 J. Cryst. Growth 235 307Google Scholar

    [16]

    Ehara Y, Shimizu T, Yasui S, Oikawa T, Shiraishi T, Tanaka H, Kanenko N, Maran R, Yamada T, Imai Y Sakata O, Valanoor N, Funakubo H 2019 Phys. Rev. B 100 104116Google Scholar

    [17]

    Izyumskaya N, Alivov Y I, Cho S J, Morkoç H, Lee H, Kang Y S 2007 Crit. Rev. Solid. State Mater. Sci. 32 111Google Scholar

    [18]

    Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar

    [19]

    Noguchi Y, Maki H, Kitanaka Y, Matsuo H, Miyayama M 2018 Appl. Phys. Lett. 113 012903Google Scholar

    [20]

    Li Y L, Chen L Q 2006 Appl. Phys. Lett. 88 072905Google Scholar

    [21]

    Pertsev N A, Tagantsev A K, Setter N 2000 Phys. Rev. B 61 R825Google Scholar

    [22]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

    [23]

    Zhang J X, Li Y L, Choudhury S, Chen L Q, Chu Y H, Zavaliche F, Cruz M P, Ramesh R, Jia Q X 2008 J. Appl. Phys. 103 094111Google Scholar

    [24]

    Ren W, Yang Y, Diéguez O, Íñiguez J, Choudhury N, Bellaiche L 2013 Phys. Rev. Lett. 110 187601Google Scholar

    [25]

    Zhang Y, Xue F, Chen Z H, Liu J M, Chen L Q 2020 Acta Mater. 183 110Google Scholar

    [26]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [27]

    Li Y L, Hu S Y, Chen L Q 2005 J. Appl. Phys. 97 034112Google Scholar

    [28]

    Yu Q, Li J, Zhu F, Li J 2014 J. Mater. Chem. C 2 5836Google Scholar

    [29]

    Lu X Y, Chen Z H, Cao Y, Tang Y L, Xu R J, Saremi S, Zhang Z, You L, Dong Y Q, Das S, Zhang H B, Zheng L M, Wu H P, Lv W M, Xie G Q, Liu X J, Li J Y, Chen L, Chen L Q, Cao W W, Martin L W 2019 Nat. Commun. 10 3951Google Scholar

    [30]

    Nguyen M D, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G 2011 Appl. Phys. Lett. 99 252904Google Scholar

    [31]

    Xue F, Wang J J, Sheng G, Huang E, Cao Y, Huang H-H, Munroe P, Mahjoub R, Li Y, Valanoor N, Chen L 2013 Acta Mater. 61 2909Google Scholar

    [32]

    Lin F Y, Cheng X, Chen L Q, Sinnott S B 2018 J. Am. Ceram. Soc. 101 4783Google Scholar

    [33]

    Devonshire A F 1949 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 1040Google Scholar

    [34]

    Chen L Q 2008 J. Am. Ceram. Soc. 91 1835Google Scholar

    [35]

    Chen L Q 2002 Ann. Rev. Mater. Res. 32 113Google Scholar

    [36]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2001 Appl. Phys. Lett. 78 3878Google Scholar

    [37]

    Li Y L, Choudhury S, Liu Z K, Chen L Q 2003 Appl. Phys. Lett. 83 1608Google Scholar

    [38]

    Shu W L, Wang J, Zhang T Y 2012 J. Appl. Phys. 112 064108Google Scholar

    [39]

    Wang J J, Wang B, Chen L Q 2019 Ann. Rev. Mater. Res. 49 127Google Scholar

    [40]

    Li Y L, Chen L Q, Asayama G, Schlom D G, Zurbuchen M A, Streiffer S K 2004 J. Appl. Phys. 95 6332Google Scholar

    [41]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

    [42]

    Haun M J, Zhuang Z Q, Furman E, Jang S J, Cross L E 1989 Ferroelectrics 99 45Google Scholar

    [43]

    Hu H L, Chen L Q 1998 J. Am. Ceram. Soc. 81 492

    [44]

    Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar

    [45]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [46]

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R, Zhang S J 2018 Nat. Mater. 17 349Google Scholar

    [47]

    Liao Z Y, Xue F, Sun W, Song D S, Zhang Q Q, Li J F, Chen L Q, Zhu J 2017 Phys. Rev. B 95 214101Google Scholar

    [48]

    Liu H, Chen J, Huang H B, Fan L L, Ren Y, Pan Z, Deng J X, Chen L Q, Xing X R 2018 Phys. Rev. Lett. 120 055501Google Scholar

    [49]

    Ma Z, Ma Y, Chen Z, Zheng F, Gao H, Liu H, Chen H 2018 Ceram. Int. 44 4338Google Scholar

  • [1] 刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波. Zr-2.5Sn合金高温腐蚀过程的相场模拟. 物理学报, 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [2] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究. 物理学报, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [3] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性. 物理学报, 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [4] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [5] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理. 物理学报, 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [6] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [7] 林翠, 白刚, 李卫, 高存法. 外延PbZr0.2Ti0.8O3薄膜负电容的应变调控. 物理学报, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [8] 杨文达, 陈洪英, 陈䶮, 田国, 高兴森. 铁电纳米结构中奇异极化拓扑畴的研究新进展. 物理学报, 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [9] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [10] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [11] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [12] 王静, 冯露, 郝毅, 赵洋, 陈振飞. 异质外延生长中应变对圆形岛形貌稳定性的影响. 物理学报, 2013, 62(23): 238102. doi: 10.7498/aps.62.238102
    [13] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [14] 余罡, 董显林, 王根水, 陈学锋, 曹菲. 37BiScO3-63PbTiO3铁电陶瓷的极化翻转行为研究. 物理学报, 2010, 59(12): 8890-8896. doi: 10.7498/aps.59.8890
    [15] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [16] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进. 物理学报, 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [17] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [18] 王英龙, 魏同茹, 刘保亭, 邓泽超. 外延PbZr0.4Ti0.6O3薄膜厚度对其铁电性能的影响. 物理学报, 2007, 56(5): 2931-2936. doi: 10.7498/aps.56.2931
    [19] 李宝山, 朱志刚, 李国荣, 殷庆瑞, 丁爱丽. 铌锰锆钛酸铅铁电陶瓷电滞回线的温度和频率响应. 物理学报, 2005, 54(2): 939-943. doi: 10.7498/aps.54.939
    [20] 王龙海, 于 军, 王耘波, 彭 刚, 刘 锋, 高峻雄. 基于静态电滞回线的铁电电容模型. 物理学报, 2005, 54(2): 949-954. doi: 10.7498/aps.54.949
计量
  • 文章访问数:  11851
  • PDF下载量:  501
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-03-29
  • 刊出日期:  2020-06-20

/

返回文章
返回