搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响

王娇 刘少辉 周梦 郝好山 翟继卫

引用本文:
Citation:

钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响

王娇, 刘少辉, 周梦, 郝好山, 翟继卫

Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites

Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan, Zhai Ji-Wei
PDF
HTML
导出引用
  • 随着功率型电力电子设备运行负荷的不断增加以及小型化集成化的发展趋势, 对电介质电容器提出了更高的要求, 其需具有高储能密度、快速充放电速度、易加工成型. 钛酸钡基无铅铁电陶瓷具有较高的介电常数的优点, 但耐击穿场强低, 而聚偏氟乙烯(PVDF)聚合物材料具有良好的柔韧性、击穿场强高、质量轻的优点, 但介电常数相对较低, 两者的储能密度均受到了限制. 为了获得高介电常数、高储能密度介质材料, 采用静电纺丝法制备了钛酸锶(SrTiO3)一维纳米纤维作为无机填料, 以聚偏氟乙烯(PVDF)为聚合物基体, 为了改善SrTiO3一维纳米纤维与PVDF聚合物基体之间的界面情况, 利用表面羟基化处理方法对SrTiO3一维纳米纤维进行表面改性, 辅以流延法制备了SrTiO3/PVDF复合材料, 研究了表面羟基化处理SrTiO3一维纳米纤维对复合材料储能性能的影响. 结果表明: 表面羟基化处理SrTiO3纳米纤维填料在PVDF聚合物中分散和结合情况良好, 复合材料具有良好的介电性能和耐击穿性能; 当表面羟基化处理SrTiO3一维纤维填料的填充量为2.5% (体积分数)时, 复合材料的储能密度达7.96 J/cm3.
    With the rapid development of the electronics industry, the dielectric materials with high energy storage density, fast charge and discharge speed, easy-to-process and easy-to-mold, and stable performance are urgently needed to meet the requirements for lightweight and miniaturization of electronic component equipment. Dielectric ceramics has a high dielectric constant, but low breakdown field strength. Polyvinylidene fluoride (PVDF) has the advantages of good flexibility, high breakdown field strength, and light weight, but its dielectric constant is low. Achieving the ability to tailor the interface between dielectric ceramics filler and PVDF polymer matrix is a key issue for realizing the desirable dielectric properties and high energy density in the nanocomposites. As a result, much effort has been made to prepare the polymer composites through the surface modification of the nanoparticles with high dielectric constant fillers dispersed in a matrix, with the hope of preparing composites containing the high dielectric constant of the ceramic fillers and the high breakdown strength of polymers. In this work, in order to obtain the high dielectric-constant and high-energy-storage-density dielectric ceramics, the electrospinning method is used to prepare the SrTiO3 one-dimensional nanofibers as the inorganic fillers and the casting method is adopted to prepare PVDF as the polymer matrix. To improve the interface between inorganic nanofiber fillers and PVDF matrix, the SrTiO3 nanofibers are modified by surface hydroxylation. The effects of suface hydroxylated SrTiO3 nanofibers on the dielectric properties and energy storage properties of PVDF composites are studied. The correlation between interface modification and energy storage performance of composites is investigated to reveal the mechanism of enhanced energy storage performance of SrTiO3 nanofibers/PVDF composites. The results show that the dispersion of surface-hydroxylating SrTiO3 nanofibers in PVDF polymer can be improved. The composites exhibit improved dielectric properties and enhanced breakdown strength. When the filling quantity of the surface-hydroxylating SrTiO3 nanofiber fillers is 2.5 vol%, the energy storage density of the composite reaches 7.96 J/cm3. Suface-hydroxylating SrTiO3 nanofibers exhibit excellent dispersion in the PVDF polymer matrix and strong interfacial adhesion with the matrix, leading the composites to possess excellent dielectric constant and energy storage performance. The surface hydroxylation of ceramic fillers can improve the energy storage performance of the composites.
      通信作者: 王娇, wangjiao_1203@163.com
    • 基金项目: 国家自然科学基金 (批准号: 51902088)、河南省科技攻关计划(批准号: 202102210002, 202102210041)和河南省大学生创新创业训练计划(批准号: S201911517008)资助的课题
      Corresponding author: Wang Jiao, wangjiao_1203@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51902088), the Programs for Tackling Key Problems in Science and Technology of Henan Province, China (Grant Nos. 202102210002, 202102210041), and the Henan Province College Students′ Innovation and Entrepreneurship Training Program, China (Grant No. S201911517008)
    [1]

    Wang Y, Wang L, Yuan Q, Niu Y, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

    [2]

    Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 7091Google Scholar

    [3]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [4]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [5]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [6]

    Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar

    [7]

    Zhang D, Zhou X, Roscow J, Zhou K, Wang L, Luo H, Bowen C R 2017 Sci. Rep. 7 45179Google Scholar

    [8]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mate.r Sci. 57 660Google Scholar

    [9]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [10]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [11]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 物理学报 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [12]

    冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 物理学报 65 188101Google Scholar

    Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar

    [13]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mate.r Chem. 22 8063Google Scholar

    [14]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [15]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [16]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [17]

    Thakur V K, Lin M F, Tan E J, Lee P S 2012 J. Mater. Chem. 22 5951Google Scholar

    [18]

    Thakur V K, Tan E J, Lin M F, Lee P S 2011 Polym. Chem. 2 2000Google Scholar

    [19]

    Thakur V K, Yan J, Lin M F, Zhi C Y, Golberg D, Bando Y, Sim R, Lee P S 2012 Polym. Chem. 3 962Google Scholar

    [20]

    Wang X, Dai Y Y, Wang W M, Ren M M, Li B Y, Fan C, Liu X Y 2014 ACS Appl. Mater. Interfaces 6 16182Google Scholar

    [21]

    Almadhoun M N, Bhansali U S, Alshareef H N 2012 J. Mater. Chem. 22 11196Google Scholar

    [22]

    Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar

    [23]

    Zhang Q P, Xia W M, Zhu Z G, Zhang Z C 2013 J. Appl. Polym. Sci. 127 3002Google Scholar

    [24]

    Zhang Z C, Chung T C M 2007 Macromolecules 40 9391Google Scholar

    [25]

    Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar

    [26]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielect. El. In. 19 960Google Scholar

    [27]

    Kim P, Doss N M, Tillotson J P, Hotchkiss P J, Pan M J, Marder S R, Li J Y, Calame J P, Perry J W 2009 ACS Nano 3 2581Google Scholar

    [28]

    王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗 2018 无机材料学报 33 1060

    Wang L, Kong W J, Luo H, Zhou X F, Zhou K C, Zhang D 2018 Journal of Inorganic Materials 33 1060

    [29]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

  • 图 1  (a)静电纺丝法制备的ST NF的SEM图; (b)表面羟基化改性前后ST NF的XRD图

    Fig. 1.  (a) SEM image of ST NF; (b) XRD patterns of ST NF and ST NF—OH.

    图 2  ST NF和ST NF—OH的FTIR图

    Fig. 2.  FTIR of ST NF and ST NF—OH.

    图 3  (a) ST NF的XPS全谱扫描图; (b) ST NF—OH的XPS全谱扫描图; 插图为O 1 s元素的精细扫描谱线

    Fig. 3.  (a) XPS spectra of ST NF; (b) XPS spectra of ST NF—OH. High-resolution XPS spectra of O 1 s are shown in the inset.

    图 4  (a) 羟基化处理前ST NF的SEM图; (b) 羟基化处理后ST NF的SEM图

    Fig. 4.  (a) SEM image of ST NF before hydroxylation; (b) SEM image of ST NF—OH.

    图 5  5% (体积分数)填充量ST NF—OH/PVDF复合材料的(a)表面形貌和(b)截面形貌

    Fig. 5.  (a) Surface SEM and (b) cross-section SEM of 5% (volume fraction) ST NF—OH/PVDF composites

    图 6  羟基化改性后ST NF与PVDF形成氢键的示意图

    Fig. 6.  Schematic diagrams of formation a bridge between the F atoms on the PVDF and the —OH groups of the hydroxylation of ST NF.

    图 7  室温条件下不同填充量(体积分数) ST NF—OH/PVDF复合材料的(a)介电常数和(b)介电损耗随频率的变化

    Fig. 7.  Frequency dependence of the dielectric constant (a) and loss tangent (b) of ST NF—OH/PVDF composites with various concentrations (volume fraction) of filler.

    图 8  不同填充量ST NF—OH/PVDF复合材料的介电常数测量值和数值模拟

    Fig. 8.  Dielectric constant measurement and numerical simulation of ST NF—OH/PVDF composites with different loading.

    图 9  (a) 不同填充量ST NF—OH/PVDF复合材料的Weibull分布曲线; (b)不同填料浓度下ST NF—OH/PVDF复合材料的室温耐击穿强度

    Fig. 9.  (a) Weibull plots and (b) breakdown strength for ST NF—OH/PVDF composites with various concentrations of fillers.

    图 10  (a)室温条件下不同ST NF—OH填料复合材料的P-E曲线; (b)不同ST NF—OH填料的复合材料的储能密度、放电效率随电场的变化

    Fig. 10.  (a) P-E curves and (b) the efficiency and energy storage density of ST NF—OH/PVDF composites with various concentration (volume fration) fillers.

    表 1  羟基化处理前后样品的晶体结构

    Table 1.  Crystal structure of the samples before and after hydroxylation.

    样品PDF卡片编号晶相空间群晶格参数/nm
    ST NF35-0734立方相Pm-3ma = b = c = 0.3911
    ST NF—OH35-0734立方相Pm-3ma = b = c = 0.3915
    下载: 导出CSV

    表 2  前期文献报道的PVDF基复合材料的储能密度与本文实验结果比较

    Table 2.  Comparison of the energy storage density of PVDF-based composite materials reported in previous literatures and the experimental results in this paper.

    材料类型表面改性方式储能
    密度/J·cm–3
    文献
    BaTiO3/P
    (VDF-HFP)薄膜
    氨甲基膦酸3.2[27]
    SrTiO3/PVDF
    薄膜
    聚乙烯吡咯烷酮3.54[25]
    BaTiO3/
    P(VDF-HFP)
    复合薄膜
    4.89[28]
    Ba0.7Sr0.3TiO3/P
    (VDF-CTFE)材料
    KH-550偶联剂6.5[29]
    SrTiO3/PVDF薄膜表面羟基化7.96本文
    下载: 导出CSV
  • [1]

    Wang Y, Wang L, Yuan Q, Niu Y, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

    [2]

    Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 7091Google Scholar

    [3]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [4]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [5]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [6]

    Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar

    [7]

    Zhang D, Zhou X, Roscow J, Zhou K, Wang L, Luo H, Bowen C R 2017 Sci. Rep. 7 45179Google Scholar

    [8]

    Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mate.r Sci. 57 660Google Scholar

    [9]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [10]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [11]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 物理学报 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [12]

    冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 物理学报 65 188101Google Scholar

    Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar

    [13]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mate.r Chem. 22 8063Google Scholar

    [14]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [15]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [16]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [17]

    Thakur V K, Lin M F, Tan E J, Lee P S 2012 J. Mater. Chem. 22 5951Google Scholar

    [18]

    Thakur V K, Tan E J, Lin M F, Lee P S 2011 Polym. Chem. 2 2000Google Scholar

    [19]

    Thakur V K, Yan J, Lin M F, Zhi C Y, Golberg D, Bando Y, Sim R, Lee P S 2012 Polym. Chem. 3 962Google Scholar

    [20]

    Wang X, Dai Y Y, Wang W M, Ren M M, Li B Y, Fan C, Liu X Y 2014 ACS Appl. Mater. Interfaces 6 16182Google Scholar

    [21]

    Almadhoun M N, Bhansali U S, Alshareef H N 2012 J. Mater. Chem. 22 11196Google Scholar

    [22]

    Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar

    [23]

    Zhang Q P, Xia W M, Zhu Z G, Zhang Z C 2013 J. Appl. Polym. Sci. 127 3002Google Scholar

    [24]

    Zhang Z C, Chung T C M 2007 Macromolecules 40 9391Google Scholar

    [25]

    Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar

    [26]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielect. El. In. 19 960Google Scholar

    [27]

    Kim P, Doss N M, Tillotson J P, Hotchkiss P J, Pan M J, Marder S R, Li J Y, Calame J P, Perry J W 2009 ACS Nano 3 2581Google Scholar

    [28]

    王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗 2018 无机材料学报 33 1060

    Wang L, Kong W J, Luo H, Zhou X F, Zhou K C, Zhang D 2018 Journal of Inorganic Materials 33 1060

    [29]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

  • [1] 郭云凤, 王俊贤, 王泽星, 李家茂, 陈立明. (Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷的结构与电学性能的影响. 物理学报, 2025, 74(1): 017702. doi: 10.7498/aps.74.20240833
    [2] 张钰业, 张镱议, 韦文厂, 苏至诚, 兰丹泉, 罗世豪. 纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟. 物理学报, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [3] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [4] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [5] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [6] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [7] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [8] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [9] 李宗宝, 王霞, 周瑞雪, 王应, 李勇. Cu-Ag协同表面改性TiO2的第一性原理研究. 物理学报, 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [10] 邹超, 徐智谋, 马智超, 武兴会, 彭静. 钛酸锶钡纳米管的制备及其红外吸收性能研究. 物理学报, 2015, 64(11): 118101. doi: 10.7498/aps.64.118101
    [11] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 物理学报, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [12] 傅成武, 张拴勤, 陈明清. 包覆型纳米纤维吸收剂的电磁性能研究. 物理学报, 2012, 61(19): 197501. doi: 10.7498/aps.61.197501
    [13] 彭静, 徐智谋, 王双保, 董泽华. 非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能. 物理学报, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [14] 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究. 物理学报, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [15] 吴雪炜, 刘晓峻. 钛酸锶纳米颗粒界面层特性的光谱学研究. 物理学报, 2008, 57(9): 5500-5505. doi: 10.7498/aps.57.5500
    [16] 周歧刚, 翟继卫, 姚 熹. 杂质分布设计对钛酸锶钡薄膜结构和性能的影响. 物理学报, 2007, 56(11): 6666-6673. doi: 10.7498/aps.56.6666
    [17] 顾伟超, 吕国华, 陈 睆, 陈光良, 冯文然, 张谷令, 杨思泽. 管状铝质材料的等离子体电解沉积行为研究. 物理学报, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [18] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [19] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello. N+离子注入聚四氟乙烯表面改性研究. 物理学报, 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [20] 陈传盛, 陈小华, 李学谦, 张 刚, 易国军, 张 华, 胡 静. 碳纳米管增强镍磷基复合镀层研究. 物理学报, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
计量
  • 文章访问数:  9317
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-07-06
  • 上网日期:  2020-10-21
  • 刊出日期:  2020-11-05

/

返回文章
返回