搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S/X双频带吸波实时可调的吸波器

周仕浩 房欣宇 李猛猛 俞叶峰 陈如山

引用本文:
Citation:

S/X双频带吸波实时可调的吸波器

周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山

S/X dual-band real-time modulated frequency selective surface based absorber

Zhou Shi-Hao, Fang Xin-Yu, Li Meng-Meng, Yu Ye-Feng, Chen Ru-Shan
PDF
HTML
导出引用
  • 本文提出了一种基于频率选择表面(FSS)的双频带实时可调的吸波器, 可以实时调控雷达散射截面(RCS). FSS的单元由带有缺口的圆环和弯曲的十字交叉偶极子组成. 通过切换嵌入在单元中的PIN二极管工作状态, 可以调控单元的谐振频率. 同时设计了一种新型的偏置网络来实现FSS阵面的可重构, 利用现场可编程门阵列(FPGA)对单元的“开/关”状态独立编码, 从而实现了对单元的散射场独立调控. 利用单元工作状态编码, 阵列RCS变化范围分别在S频带达到33dB (3.2 GHz), 在X频带达到26dB (10.3 GHz). 仿真分析和实验结果都证明了设计的合理性.
    Frequency selective surface (FSS) is of great research interest for its wide applications in radome, absorber, electromagnetic filters, and artificial electromagnetic bandgap materials. In order to achieve a multifunctional FSS with real-time manipulated radar cross-section (RCS), there are mainly three ways, i.e. to design reconfigurable FSS unit cell, reconfigurable screen, and a combination of reconfigurable unit cell and screen. In this work, a combination design of both the reconfigurable unit cells and FSS screen is proposed to realize a dual-band FSS absorber with real-time manipulated RCS. For the reconfigurable unit cell, an angular ring and a meander cross dipole are combined to obtain a dual-band absorption. The dual-band resonance frequencies are reconfigurable by switching the PIN diodes embedded in the unit cell. When switching the PIN diodes, the resonance frequencies of the unit cell would be changed due to the variation of the effective capacitance and inductance of the unit cell. For the reconfigurable FSS screen, a novel biasing network is introduced, then the scattering field from each unit cell is modulated independently by switching the “on/off” state of the PIN diode through using a programmable field programmable gate array (FPGA). The total scattering far field is expressed as the superposition of the scattering field from each unit cell, and the far field scattered by the unit cell which is evaluated under an infinite periodic boundary condition. The scattering field of the FSS absorber can be predicted by considering the working states of all the unit cells on the screen. We define the unit cell as state “0”, when all the PIN diodes are at the states of “off”, and as state “1” when the PIN diodes are all at the states of “off”. The entire screen of FSS absorber is thus pixelated, which can be expressed by a binary coding matrix. The real-time scattering fields from the FSS absorber are manipulated perfectly by optimizing the states matrices showing “on/off” of each unit cell with genetic algorithm (GA). The FSS absorber is fabricated and measured. The ranges of 33dB and 25dB reconfigurable monostatic RCS at 3.2 GHz and 10.3 GHz are achieved by coding the states of unit cells on the FSS absorber screen. Both full-wave and analytical simulations demonstrate the effectiveness of the proposed optimization procedure. Compared with the reported FSS absorber, the proposed design is validated to possess good performance.
      通信作者: 李猛猛, limengmeng@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871222, 61890540, 61890541)、江苏省自然科学基金(批准号: BK20171429)和中央高校基本科研业务费专项资金(批准号: 30918011103)资助的课题
      Corresponding author: Li Meng-Meng, limengmeng@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871222, 61890540, 61890541), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20171429), and the Fundamental Research Funds for the Central Universities (Grant No. 30918011103)
    [1]

    Munk B A 2020 Frequency Selective Surfaces: Theory and Design (New York: Wiley) pp5–25

    [2]

    Wu T K Ed 1995 Frequency Selective Surface and Grid Array (New York: Wiley) pp5–25

    [3]

    Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61

    [4]

    Bossard J A, Werner D H, Mayer T S, Drupp R P 2005 IEEE Trans. Antennas Propag. 53 1390

    [5]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740

    [6]

    Ghosh S, Srivastava K V 2017 IEEE Antennas Wireless Propag. Lett. 16 1687

    [7]

    Ghosh S, Srivastava K V 2014 IEEE Antennas Wireless Propag. Lett. 14 511

    [8]

    Tennant A, Chambers B 2004 IEEE Microw. Wireless Compon. Lett. 14 46

    [9]

    Sun L, Cheng H, Zhou Y, Wang J 2012 Optics Express 20 4675Google Scholar

    [10]

    吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 物理学报 64 164102Google Scholar

    Wu C J, Cheng Y Z., Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102Google Scholar

    [11]

    李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103Google Scholar

    [12]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [13]

    Costantine J, Tawk Y, Barbin S E, Christodoulou C G 2015 Proc. IEEE 103 424Google Scholar

    [14]

    Zhu B, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. 24 121Google Scholar

    [15]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [16]

    WangM, Hu C, Pu M, Huang C, Ma X, Luo X 2012 Electron. Lett. 48 1002

    [17]

    Xu W, He Y, Kong P, Li J, Xu H, Miao L, Bie S, Jiang J 2015 J. Appl. Phys. 118 184903Google Scholar

    [18]

    Parker E A, Savia S B 2001 in Proc. Inst. Elect. Eng. Microwaves, Antennas, Propag. 148 103Google Scholar

    [19]

    Lima A C de C, Parker E A, Langley R J 1994 Electron. Lett. 30 281Google Scholar

    [20]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [21]

    Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar

    [22]

    Pazokian M, Komjani N, Karimipour M 2018 IEEE Antennas Wireless Propag. Lett. 17 1382Google Scholar

    [23]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16 724

    [24]

    Yu J, Jiang W, Gong S 2019 IEEE Antennas Wireless Propag. Lett. 18 2016Google Scholar

    [25]

    Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar

    [26]

    Liu Y, Li K, Jia Y, Hao Y, Gong S X, Guo Y J 2016 IEEE Trans.Antennas Propag. 64 326Google Scholar

    [27]

    Yang H, Yang F, Xu S, Mao Y, Li M, Cao X, Gao J 2016 IEEE Trans.Antennas Propag. 64 2246Google Scholar

    [28]

    Yang H, Yang F, Cao X, Xu S, Gao J, Chen X, Li M, Li T 2017 IEEE Trans.Antennas Propag. 65 3024Google Scholar

    [29]

    Xu J, Li M, Chen R S 2017 IET Microwaves Antennas Propag. 11 1578

  • 图 1  可重构FSS单元 (a) 俯视图; (b) 侧视图

    Fig. 1.  Configuration of the dual-band reconfigurable FSS unit cell: (a) Top view; (b) side view.

    图 2  FSS单元反射系数的仿真结果

    Fig. 2.  Simulated reflection coefficients of the proposed dual-band reconfigurable FSS unit cell.

    图 3  单元二极管全“截止”状态时表面电流分布 (a) 3.9 GHz, (b) 10.6 GHz; 单元二极管全“导通”状态时表面电流分布 (c) 3.9 GHz, (d) 10.6 GHz

    Fig. 3.  Surface currents distribution of the FSS unit cell with PIN diodes all at “off” states at (a) 3.9 GHz and (b) 10.6 GHz; surface currents distribution of the FSS unit cell with PIN diodes all at “on” states at (c) 3.9 GHz and (d) 10.6 GHz.

    图 4  单元的二极管全“截止”状态时频率为 (a) 3.9 GHz, (c) 10.6 GHz的RCS; 单元的二极管全“导通”状态时频率为 (b) 3.9 GHz, (d) 10.6 GHz的RCS

    Fig. 4.  Simulated two-dimensional RCS of the FSS unit cell with PIN diodes all at “off” states at (a) 3.9 GHz and (c) 10.6 GHz; two-dimensional RCS when with PIN diodes all at “on” states at (b) 3.9 GHz and (d) 10.6 GHz.

    图 5  RCS实时可调的FSS吸波器 (a) 可重构FSS吸波器系统包括FSS吸波器, FPGA, 状态编码的PIN开关; (b) 偏置网络

    Fig. 5.  Reconfigurable FSS absorber with real-time coding RCS: (a) System of the reconfigurable FSS absorber including FSS absorber, programmable FPGA, and coding for the states of switchable PIN diodes, inset is a fabricated unit cell; (b) biasing network for PIN diodes embedded in the meander cross (MC) and angular ring (AR) of the unit cells.

    图 6  在3.8 GHz频率下双站RCS的全波仿真结果, 当优化1/4阵列的状态矩阵时, 主反射方向$(\theta ={0^ \circ }, \phi = {0^ \circ })$的RCS为 (a) 10dB, (b) 5dB, (c) 0dB, (d) 1/4阵列的优化状态

    Fig. 6.  Full-wave and analytical method simulated bistatic RCS of the reconfigurable FSS absorber at 3.8 GHz. The RCS is manipulated to be (a) 10dB, (b) 5dB, and (c) 0dB at the main reflection direction $(\theta ={0^ \circ }, \phi = {0^ \circ })$, when optimizing the states matrices as in (d) of the unit cells of a quarter of the screen.

    图 7  在10.5 GHz频率下双站RCS的全波仿真结果, 当优化1/4阵列的状态矩阵时, 主反射方向$(\theta ={0^ \circ }, \phi = {0^ \circ })$的RCS为 (a) 20dB, (b) 15dB, (c) 10dB, (d) 1/4阵列的优化状态

    Fig. 7.  Full-wave and analytical method simulated bistatic RCS of the reconfigurable FSS absorber at 10.5 GHz. The RCS is manipulated to be (a) 20dB (b) 15dB, and (c) 10dB at the main reflection direction $(\theta ={0^ \circ }, \phi = {0^ \circ })$, when optimizing the states matrices as in (d) of the unit cells of a quarter of the screen.

    图 8  双站RCS全波仿真结果. 当优化1/4阵列的状态矩阵时, 主反射方向$(\theta ={0^ \circ }, \phi = {0^ \circ })$的RCS在3.8 GHz频率下为 (a) 10 dB, (b) 5 dB, (c) 0 dB; 在10.5 GHz频率下为 (d) 20 dB, (e) 15 dB, (f) 10 dB

    Fig. 8.  Full-wave simulated two-dimensional RCS of the reconfigurable FSS absorber. The RCS from the main reflection direction $(\theta ={0^ \circ }, \phi = {0^ \circ })$ is optimized to be (a) 10 dB, (b) 5 dB, and (c) 0 dB at 3.8 GHz; the RCS is optimized to be (d) 20 dB, (e) 15 dB, and (f) 10 dB at 10.5 GHz.

    图 9  双频可重构FSS波收器的测量 (a) 单站RCS的测量设置; (b) 图7中测量的FSS阵列的4种状态

    Fig. 9.  Measurement of the proposed dual-band reconfigurable FSS absorber: (a) Measurement setup for the monostatic RCS; (b) four states of the FSS screen measured in Fig. 7.

    图 10  (a) 2.9—3.7 GHz, (b) 9.7—11.1 GHz范围内FSS吸波器单站RCS测量值, 可调节RCS范围分别为33dB和26dB.

    Fig. 10.  Measured monostatic RCS of the FSS absorber within (a) 2.9 to 3.7 GHz and (b) 9.7 to 11.1 GHz, ranges of 33dB and 26dB tunable RCS are obtained.

    表 1  通孔1, 2, 3, 4的电压变化, 可重新配置FSS的吸波器状态

    Table 1.  Reconfigurable FSS based absorber unit cell with the change of the voltage of via holes 1, 2, 3, and 4.

    状态通孔1通孔2通孔3通孔4圆环偶极子LED
    1
    2
    3
    4
    下载: 导出CSV

    表 2  与现有可重构基于FSS的吸波器的比较

    Table 2.  Lists of the comparison with existing published reconfigurable FSS based absorber.

    可重构吸波器带宽个数频率范围/GHz厚度(${\lambda _0}$)大小(${\lambda _0}$)RCS可调节范围/dB能否调控RCS
    [6]22.26, 3.79
    4.02, 6.36
    0.022.08 × 2.08–16
    [11]12.60, 2.900.022.7 × 2.9
    [12]14.10, 4.790.052.4 × 1.1–25
    [13]11.95, 2.070.023.2 × 3.2–40
    [14]10.70, 0.90, 1.10, 1.40, 1.50, 1.800.032.0 × 2.0–10
    [19]18.800.9 × 0.9–24
    本工作23.20, 10.30
    4.80, 11.00
    0.0812.5 × 6.253326
    下载: 导出CSV
  • [1]

    Munk B A 2020 Frequency Selective Surfaces: Theory and Design (New York: Wiley) pp5–25

    [2]

    Wu T K Ed 1995 Frequency Selective Surface and Grid Array (New York: Wiley) pp5–25

    [3]

    Kern D J, Werner D H 2003 Microwave Opt. Technol. Lett. 38 61

    [4]

    Bossard J A, Werner D H, Mayer T S, Drupp R P 2005 IEEE Trans. Antennas Propag. 53 1390

    [5]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740

    [6]

    Ghosh S, Srivastava K V 2017 IEEE Antennas Wireless Propag. Lett. 16 1687

    [7]

    Ghosh S, Srivastava K V 2014 IEEE Antennas Wireless Propag. Lett. 14 511

    [8]

    Tennant A, Chambers B 2004 IEEE Microw. Wireless Compon. Lett. 14 46

    [9]

    Sun L, Cheng H, Zhou Y, Wang J 2012 Optics Express 20 4675Google Scholar

    [10]

    吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 物理学报 64 164102Google Scholar

    Wu C J, Cheng Y Z., Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102Google Scholar

    [11]

    李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103Google Scholar

    [12]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [13]

    Costantine J, Tawk Y, Barbin S E, Christodoulou C G 2015 Proc. IEEE 103 424Google Scholar

    [14]

    Zhu B, Huang C, Feng Y, Zhao J, Jiang T 2010 Prog. Electromagn. 24 121Google Scholar

    [15]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [16]

    WangM, Hu C, Pu M, Huang C, Ma X, Luo X 2012 Electron. Lett. 48 1002

    [17]

    Xu W, He Y, Kong P, Li J, Xu H, Miao L, Bie S, Jiang J 2015 J. Appl. Phys. 118 184903Google Scholar

    [18]

    Parker E A, Savia S B 2001 in Proc. Inst. Elect. Eng. Microwaves, Antennas, Propag. 148 103Google Scholar

    [19]

    Lima A C de C, Parker E A, Langley R J 1994 Electron. Lett. 30 281Google Scholar

    [20]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218

    [21]

    Li M, Li S, Yu Y F, Ni X, Chen R S 2018 Opt. Express 26 24702Google Scholar

    [22]

    Pazokian M, Komjani N, Karimipour M 2018 IEEE Antennas Wireless Propag. Lett. 17 1382Google Scholar

    [23]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16 724

    [24]

    Yu J, Jiang W, Gong S 2019 IEEE Antennas Wireless Propag. Lett. 18 2016Google Scholar

    [25]

    Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2016 IEEE Trans. Antennas Propag. 64 179Google Scholar

    [26]

    Liu Y, Li K, Jia Y, Hao Y, Gong S X, Guo Y J 2016 IEEE Trans.Antennas Propag. 64 326Google Scholar

    [27]

    Yang H, Yang F, Xu S, Mao Y, Li M, Cao X, Gao J 2016 IEEE Trans.Antennas Propag. 64 2246Google Scholar

    [28]

    Yang H, Yang F, Cao X, Xu S, Gao J, Chen X, Li M, Li T 2017 IEEE Trans.Antennas Propag. 65 3024Google Scholar

    [29]

    Xu J, Li M, Chen R S 2017 IET Microwaves Antennas Propag. 11 1578

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [3] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [5] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [6] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [8] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计. 物理学报, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [9] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [10] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [15] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [17] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [18] 周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓. 一种加载电阻膜吸波材料的新型频率选择表面. 物理学报, 2012, 61(10): 104201. doi: 10.7498/aps.61.104201
    [19] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [20] 李小秋, 高劲松, 赵晶丽, 孙连春. 一种适用于雷达罩的频率选择表面新单元研究. 物理学报, 2008, 57(6): 3803-3806. doi: 10.7498/aps.57.3803
计量
  • 文章访问数:  8598
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-25
  • 修回日期:  2020-06-12
  • 上网日期:  2020-10-12
  • 刊出日期:  2020-10-20

/

返回文章
返回