搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超导电路的奥特-汤恩斯分裂效应

吴小宇 赵虎 李智

引用本文:
Citation:

基于超导电路的奥特-汤恩斯分裂效应

吴小宇, 赵虎, 李智

Superconducting-circuit based Aulter-Towns splitting effect

Wu Xiao-Yu, Zhao Hu, Li Zhi
PDF
HTML
导出引用
  • 基于约瑟夫森结的超导量子比特是一个宏观的人工原子, 通过微纳米加工的方法, 可以改变人工原子的基本参数. 三维Transmon量子比特是目前已知退相干时间较长的一种量子比特, 该量子比特通过电容的方式与三维超导谐振腔进行耦合, 是一个人造的原子与腔场耦合系统, 可对原子物理、量子力学、量子光学、腔量子电动力学的各种效应进行实验验证. 本文制备并实现了3D Transmon量子比特, 通过Jaynes-Cummings方法寻找到了区分基态、第一激发态和第二激发态的最佳读出功率, 对共振条件下和非共振条件下的奥特-汤恩斯分裂效应进行了测试表征, 得到的测试结果与理论结果相符.
    The superconducting quantum bit(qubit) based on Josephson junction is a macroscopic artificial atom. The basic parameters of the artificial atom can be changed by micro and nano machining. The three-dimensional (3D) Transmon qubit is a kind of qubit with the longer decoherence time. It is coupled with a 3D superconducting cavity by means of capacitance. It is a man-made coupling system between atom and cavity field, which can verify the effects of atomic physics, quantum mechanics, quantum optics and cavity quantum electrodynamics. In this paper, transmon qubits are prepared by the double angle evaporation method, and coupled with aluminum based 3D superconducting resonator to form 3D transmon qubits. The basic parameters of 3D transmon are characterized at an ultra-low temperature of 10 mK. The 3D transmon parameters are EC = 348.74 MHz and EJ = 11.556 GHz. The coupling coefficient g2/Δ between qubit and the 3D cavity is 43 MHz, which is located in the dispersive regime. The first transition frequency of qubit is f01 = 9.2709 GHz, and the second transition frequency is f12 = 9.0100 GHz. The 3D resonator is made of the material 6061T6 aluminum, the loaded quality factor is 4.8 × 105, and the bare frequency of the resonator is 8.108 GHz. The Jaynes-Cummings readout method is used to find the optimal readout power to distinguish among the qubit in the ground state $ \left| {\rm{0}} \right\rangle $, qubit in the superposition state of $ \left| {\rm{0}} \right\rangle $ and $ \left| {\rm{1}} \right\rangle $, and qubit in the superposition state of $ \left| {\rm{0}} \right\rangle $, $ \left| {\rm{1}} \right\rangle $ and $ \left| {\rm{2}} \right\rangle $. Then, the Aulter-Townes splitting (ATS) experiment can be fulfilled in this system. Unlike the method given by Novikov et al. [Novikov S, Robinson J E, Keane Z K, et al. 2013 Phys. Rev. B 88 060503], our method only needs to apply continuous microwave excitation signal to the qubit, and does not need to carry out precise timing test on the qubit, thus reducing the test complexity of observing ATS effect. The ATS effect in resonance and non-resonance regime are observed. In the resonance ATS experiment, in order to obtain the peak value and frequency of resonance peak, Lorentz curve can be used for fitting peaks, and the ATS curve of double peak can be fitted by adding two Lorentz curves together. In the non-resonance ATS experiment, the detection signal is scanned, and the ATS double peak will shift with the different coupling signal detuning, forming an anti-crossing structure. The two curves formed by crossing free structure give two eigenvalues of Hamiltonian. By solving the equation, the experimental results can also be found to be consistent with the theoretical results.
      通信作者: 李智, lizhi@scu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00304)和国家自然科学基金重点项目(批准号: 60836001)资助的课题
      Corresponding author: Li Zhi, lizhi@scu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00304) and the Key Program of the National Natural Science Foundation of China (Grant No. 60836001)
    [1]

    You J Q, Nori F 2005 Phys. Today 58 42

    [2]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [3]

    Krantz P, Kjaergaard M, Yan F, et al. 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [4]

    Rigetti C, Gambetta J M, Poletto S, et al. 2012 Phys. Rev. 86 100506Google Scholar

    [5]

    Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195Google Scholar

    [6]

    Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162Google Scholar

    [7]

    Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 6

    [8]

    Murch K W, Weber S J, Macklin C, et al. 2013 Nature 502 211Google Scholar

    [9]

    Yoshihara F, Fuse T, Ashhab S, et al. 2017 Nat. Phys. 13 44Google Scholar

    [10]

    赵虎, 李铁夫, 刘建设等 2012 物理学报 61 154214Google Scholar

    Zhao H, Li T F, Liu J S, et al. 2012 Acta Phys. Sin. 61 154214Google Scholar

    [11]

    Wilson C M, Johansson G, Pourkabirian A, et al. 2011 Nature 479 376Google Scholar

    [12]

    Yoshihara F, Fuse T, Ao Z, et al. 2018 Phys. Rev. Lett. 120 183601Google Scholar

    [13]

    Lin Y H, Nguyen L B, Grabon N, et al. 2018 Phys. Rev. Lett. 120 150503Google Scholar

    [14]

    Wen P Y, Kockum A F, Ian H, et al. 2018 Phys. Rev. Lett. 120 063603Google Scholar

    [15]

    Magazzù L, Forn-Díaz P, Belyansky R, et al. 2018 Nat. Commun. 9 1403Google Scholar

    [16]

    Wang W, Wu Y, Ma Y, et al. 2019 Nat. Commun. 10 4382Google Scholar

    [17]

    Hu L, Ma Y, Cai W, et al. 2019 Nat. Phys. 15 503Google Scholar

    [18]

    Xu Y, Ma Y, Cai W, et al. 2020 Phys. Rev. Lett. 124 120501Google Scholar

    [19]

    Baur M, Filipp S, Bianchetti R, et al. 2009 Phys. Rev. Lett. 102 243602Google Scholar

    [20]

    Sillanpaa M A, Li J, Cicak K, et al. 2009 Phys. Rev. Lett. 103 193601Google Scholar

    [21]

    Abdumalikov A A, Astafiev O, Zagoskin A M, et al. 2010 Phys. Rev. Lett. 104 193601Google Scholar

    [22]

    Novikov S, Robinson J E, Keane Z K, et al. 2013 Phys. Rev. B 88 060503Google Scholar

    [23]

    赵虎, 李铁夫, 刘其春等 2014 物理学报 63 220305Google Scholar

    Zhao H, Li T F, Liu Q C, et al. 2014 Acta Phys. Sin. 63 220305Google Scholar

    [24]

    Zhao H, Li T F, Liu Q C, et al. 2014 Chin. Phys. Lett. 31 102101Google Scholar

    [25]

    Paik H, Schuster D I, Bishop L S, et al. 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [26]

    Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601Google Scholar

    [27]

    Aulter S H, Townes C H 1955 Phys. Rev. 100 703Google Scholar

  • 图 1  Transmon量子比特等效电路图

    Fig. 1.  Equivalent circuit diagram of Transmon qubit.

    图 2  双角度蒸发工艺示意图

    Fig. 2.  Schematic diagram of double angle evaporation process.

    图 3  3D Transmon样品及能级分布

    Fig. 3.  3D transmon sample and energy level distribution.

    图 4  3D Transmon的频域测试系统

    Fig. 4.  Frequency domain measurement system of 3D Transmon.

    图 5  网络分析仪变功率扫描S21曲线

    Fig. 5.  S21 curve of variable power scanning of network analyzer.

    图 6  (a)区分两个量子态的读出功率的优化; (b)区分三个能态的最佳读出功率优化

    Fig. 6.  (a) Optimization of readout power for distinguishing two quantum states; (b) optimization for distinguishing three energy states.

    图 7  奥特-汤恩斯分裂效应示意图

    Fig. 7.  Schematic diagram of ATS effect.

    图 8  3D Transmon量子比特的奥特-汤恩斯分裂效应 (a)奥特-汤恩斯分裂效应测试强度图; (b)奥特-汤恩斯分裂效应双峰间距与微波幅度的关系; (c)耦合信号功率为–30 dBm时的奥特-汤恩斯分裂效应曲线; (d)耦合信号功率为–20 dBm时的奥特-汤恩斯分裂效应曲线; (e)耦合信号功率为–10 dBm时的奥特-汤恩斯分裂效应曲线.

    Fig. 8.  ATS effect of 3D transmon qubit: (a) ATS test intensity diagram; (b) relationship between ATS peak spacing and microwave amplitude; (c) ATS curve at –30 dBm coupling signal power; (d) ATS curve at –20 dBm coupling signal power; (e) ATS curve at –10 dBm coupling signal power.

    图 9  非共振条件下的奥特-汤恩斯分裂效应免交叉测试强度图 (a)${\omega _{\rm{C}}}$的功率为–20 dBm; (b)${\omega _{\rm{C}}}$的功率为–15 dBm; (c)${\omega _{\rm{C}}}$的功率为–10 dBm

    Fig. 9.  Anticrossing intensity test diagram of ATS under non resonance condition: (a) Power of ${\omega _{\rm{C}}}$ is –20 dBm; (b) power of ${\omega _{\rm{C}}}$ is –15 dBm; (c) power of ${\omega _{\rm{C}}}$ is –10 dBm.

  • [1]

    You J Q, Nori F 2005 Phys. Today 58 42

    [2]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [3]

    Krantz P, Kjaergaard M, Yan F, et al. 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [4]

    Rigetti C, Gambetta J M, Poletto S, et al. 2012 Phys. Rev. 86 100506Google Scholar

    [5]

    Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195Google Scholar

    [6]

    Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162Google Scholar

    [7]

    Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 6

    [8]

    Murch K W, Weber S J, Macklin C, et al. 2013 Nature 502 211Google Scholar

    [9]

    Yoshihara F, Fuse T, Ashhab S, et al. 2017 Nat. Phys. 13 44Google Scholar

    [10]

    赵虎, 李铁夫, 刘建设等 2012 物理学报 61 154214Google Scholar

    Zhao H, Li T F, Liu J S, et al. 2012 Acta Phys. Sin. 61 154214Google Scholar

    [11]

    Wilson C M, Johansson G, Pourkabirian A, et al. 2011 Nature 479 376Google Scholar

    [12]

    Yoshihara F, Fuse T, Ao Z, et al. 2018 Phys. Rev. Lett. 120 183601Google Scholar

    [13]

    Lin Y H, Nguyen L B, Grabon N, et al. 2018 Phys. Rev. Lett. 120 150503Google Scholar

    [14]

    Wen P Y, Kockum A F, Ian H, et al. 2018 Phys. Rev. Lett. 120 063603Google Scholar

    [15]

    Magazzù L, Forn-Díaz P, Belyansky R, et al. 2018 Nat. Commun. 9 1403Google Scholar

    [16]

    Wang W, Wu Y, Ma Y, et al. 2019 Nat. Commun. 10 4382Google Scholar

    [17]

    Hu L, Ma Y, Cai W, et al. 2019 Nat. Phys. 15 503Google Scholar

    [18]

    Xu Y, Ma Y, Cai W, et al. 2020 Phys. Rev. Lett. 124 120501Google Scholar

    [19]

    Baur M, Filipp S, Bianchetti R, et al. 2009 Phys. Rev. Lett. 102 243602Google Scholar

    [20]

    Sillanpaa M A, Li J, Cicak K, et al. 2009 Phys. Rev. Lett. 103 193601Google Scholar

    [21]

    Abdumalikov A A, Astafiev O, Zagoskin A M, et al. 2010 Phys. Rev. Lett. 104 193601Google Scholar

    [22]

    Novikov S, Robinson J E, Keane Z K, et al. 2013 Phys. Rev. B 88 060503Google Scholar

    [23]

    赵虎, 李铁夫, 刘其春等 2014 物理学报 63 220305Google Scholar

    Zhao H, Li T F, Liu Q C, et al. 2014 Acta Phys. Sin. 63 220305Google Scholar

    [24]

    Zhao H, Li T F, Liu Q C, et al. 2014 Chin. Phys. Lett. 31 102101Google Scholar

    [25]

    Paik H, Schuster D I, Bishop L S, et al. 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [26]

    Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601Google Scholar

    [27]

    Aulter S H, Townes C H 1955 Phys. Rev. 100 703Google Scholar

  • [1] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [2] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理. 物理学报, 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [3] 李静和, 何展翔, 孟淑君, 杨俊, 李文杰, 廖小倩. 三维地形频率域井筒电磁场区域积分方程法模拟. 物理学报, 2019, 68(14): 140202. doi: 10.7498/aps.68.20190330
    [4] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应. 物理学报, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [5] 罗海滨, 李俊杰, 马渊, 郭春文, 王锦程. 粗化过程中颗粒界面形状演化的三维多相场法研究. 物理学报, 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [6] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [7] 钱利波, 朱樟明, 杨银堂. 一种考虑硅通孔电阻-电容效应的三维互连线模型. 物理学报, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [8] 何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军. 超深亚微米器件总剂量辐射效应三维数值模拟. 物理学报, 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [9] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [10] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [11] 康冬鹏, 任 珉, 马爱群, 钱 妍, 刘正君, 刘树田. k光子Jaynes-Cummings模型光场的熵压缩. 物理学报, 2008, 57(2): 873-879. doi: 10.7498/aps.57.873
    [12] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应. 物理学报, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [13] 黄燕霞, 汪毅, 詹明生. 非线性Jaynes-Cummings模型的动力学特性. 物理学报, 2002, 51(10): 2249-2248. doi: 10.7498/aps.51.2249
    [14] 侯邦品. 含时调制的Jaynes-Cummings模型的Pancharatnam相位. 物理学报, 2000, 49(9): 1663-1666. doi: 10.7498/aps.49.1663
    [15] 田永红, 彭金生, 徐大海, 陶少华. 含非线性修正项的双光子Jaynes-Cummings模型中光子反聚束效应的研究. 物理学报, 1999, 48(8): 1439-1445. doi: 10.7498/aps.48.1439
    [16] 顾樵. Jaynes-Cummings模型的量子统计性质. 物理学报, 1989, 38(5): 735-744. doi: 10.7498/aps.38.735
    [17] 周鹏, 彭金生. 双光子Jaynes-Cummings模型中原子的压缩效应. 物理学报, 1989, 38(12): 2044-2048. doi: 10.7498/aps.38.2044
    [18] 顾樵. 双光子Jaynes-Cummings模型中的压缩. 物理学报, 1988, 37(5): 751-759. doi: 10.7498/aps.37.751
    [19] 罗耕贤, 郭光灿. 双色场Jaynes-Cummings模型的量子理论. 物理学报, 1988, 37(12): 1956-1964. doi: 10.7498/aps.37.1956
    [20] 李孝申. 量子统计的级联三能级Jaynes-Cummings模型. 物理学报, 1985, 34(6): 833-840. doi: 10.7498/aps.34.833
计量
  • 文章访问数:  5576
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 修回日期:  2020-07-16
  • 上网日期:  2020-11-17
  • 刊出日期:  2020-12-05

/

返回文章
返回