搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扁长型微瓶腔中的回音壁模式选择及Fano谐振

王梦宇 孟令俊 杨煜 钟汇凯 吴涛 刘彬 张磊 伏燕军 王克逸

引用本文:
Citation:

扁长型微瓶腔中的回音壁模式选择及Fano谐振

王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸

Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators

Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi
PDF
HTML
导出引用
  • 微瓶腔在腔动力学、非线性光学、高灵敏度传感和微型激光器等领域具有非常大的应用潜力. 首先, 从亥姆霍兹方程出发, 详细研究了微瓶腔中的模式场分布理论. 利用电弧放电加工方法, 制备了扁长型微瓶腔. 其次, 采用光纤锥波导耦合方式有效激发了微瓶腔中的径向模式和轴向模式, 并且通过调节微瓶腔与波导的耦合间隙, 实现了对微瓶腔的欠耦合、临界耦合和过耦合三种耦合状态控制. 实验中, 光谱中回音壁模式得到很好的模式定位和识别, 最大品质因子Q值达到1.78 × 108. 通过采用接触式耦合来增强调谐的稳定性, 控制不同的耦合位置实现了谐振模式选择性激发, 得到了稳定并且干净的谐振光谱. 最后, 通过选择光纤锥波导直径观察到了Fano谐振效应. 所展示的结果对增强微腔传感、非线性光学和腔动力学等应用有重要意义.
    Optical microresonators supporting whispering-gallery modes have been intensively studied in past decades due to their practical applications ranging from fundamental science to engineering physics. Among such microresonators, microsphere resonators have been demonstrated to possess ultra-high quality (Q) factor, however, their shapes usually become non-standard spherical body, leading to irregular resonant spectra. Microring resonators have unique potential in integraibility on chip, but the fabrication imperfection limits their Q-factor only to 106. In addition, the free spectral range (FSR) just depends on their radius. Due to the advantages of high Q-factor, standard shape, slender mode field distribution, the microbottle resonators are demonstrated to possess excellent performance in cavity quantum dynamics, nonlinear optics, high-sensitivity sensing, and micro-laser. In this paper, we carry out a systematic study on the spectral characteristics of prolate microbottle resonator theoretically and experimentally. First, theoretically, the field distribution theory of the microbottle resonator is studied in detail based on Helmholtz equation. Experimentally, prolate microbottle resonators are fabriated via arc discharge technology. Second, the radial modes and axial modes of the microbottles are efficiently excited with the help of a coupled tapered fiber waveguide. By adjusting the coupling gap between the microbottle and the waveguide, The controlling of three cupling states i.e. undercoupling, critical coupling and overcoupling are realized. In our experiment, the whispering-gallery modes excited are identifiable and recognizable. The resonant mode with an ultra-high Q-factor of up to 1.78 × 108 is achieved. The characteristic of ultra-high Q-factor makes the microbottle hold great potential in biochemical sensing, nonlinear optics, and micro-laser. The tuning stability is enhanced by keeping the waveguide in touch with the microbottle. We investigate the selective excitation of whispering-gallery modes by adjusting different coupling points. As a result, clean spectra with robust coupling are observed. The stable device is suitable for improving the sensing performance. Finally, Fano resonance effect is obtained by choosing the diameter of the tapered fiber waveguide. The results presented in this paper will be of great significance for enhancing the sensing, nonlinear optics and cavity quantum dynamics.
      通信作者: 吴涛, wutccnu@nchu.edu.cn ; 王克逸, kywang@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775209, 41871229, 61275011)和江西省重点研发计划(批准号: 20192BBH80019)资助的课题
      Corresponding author: Wu Tao, wutccnu@nchu.edu.cn ; Wang Ke-Yi, kywang@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775209, 41871229, 61275011) and the Key Research and Development Program of Jiangxi Province, China (Grant No. 20192BBH80019)
    [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Wang P, Ding M, Murugan G S, Bo L, Guang C, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [3]

    王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁 2015 物理学报 64 164212Google Scholar

    Wang T, Yang X, Liu X F, Lei F C, Gao M, Hu Y Q, Long G L 2015 Acta Phys. Sin. 64 164212Google Scholar

    [4]

    Wang M, Jin X, Li F, Cai B, Yang Y, Zeng S, Wang K 2019 Mater. Lett. 244 211Google Scholar

    [5]

    Lin G, Coikket A, Chembo Y K 2017 Adv. Opt. Photonics 9 828Google Scholar

    [6]

    Shen Z, Zhou Z, Zhou C, Sun F, Guo G, Dong C, Guo G 2015 Photonics Res. 3 243Google Scholar

    [7]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136Google Scholar

    [8]

    Bogaerts W, Heyn P D, Vaerenbergh T V, et al. 2012 Laser Photonics Rev. 6 47

    [9]

    Wang T, He J, Lee C, Niu H 2012 Opt. Express 20 28119Google Scholar

    [10]

    Gu G, Chen L, Fu H, Che K, Cai Z, Xu H 2013 Chin. Opt. Lett. 11 101401Google Scholar

    [11]

    Sumetsky M 2004 Opt. Lett. 29 8Google Scholar

    [12]

    Louyer Y, Meschede D, Rauschenbeutel A 2005 Phys. Rev. A 72 031801Google Scholar

    [13]

    Sumetsky M 2019 Prog. Quantum Electron. 64 1Google Scholar

    [14]

    Pöllinger M, O'Shea D, Warken F, Rauschenbeutel A 2009 Phys. Rev. Lett. 103 053901Google Scholar

    [15]

    Murugan G S, Wilkinson J S, Zervas M N 2009 Opt. Express 17 11816

    [16]

    Murugan G S, Wilkinson J S, Zervas M N 2010 Opt. Lett. 35 1893Google Scholar

    [17]

    Sumetsky M 2013 Phys. Rev. Lett. 111 163901Google Scholar

    [18]

    Dong Y, Jin X, Wang K 2015 App. Opt. 54 4016Google Scholar

    [19]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light Sci. Appl. 6 e17061Google Scholar

    [20]

    Lu Q, Chen X, Xie S, Wu X 2018 Opt. Express 26 20183Google Scholar

    [21]

    Yin Y, Niu Y, Ren M, Wu W, Zhao W, Nan J, Zheng Z, Zhang Y, Ding M 2018 Opt. Lett. 19 4715

    [22]

    Stoian R, Kavine B K, Rosenberger A T 2019 Talanta 194 585Google Scholar

    [23]

    Asano M, Takeuchi Y, Ozdemir S K, Rikizo I, Yang L, Imoto N, Yamamoto T 2016 Opt. Express 24 12082Google Scholar

    [24]

    Chen Y, Zhou Z, Zou C, Shen Z, Guo G, Dong C 2017 Opt. Express 25 16879Google Scholar

    [25]

    Yong Y, Ooka Y, Thompson R, Ward J, Chormaic S N 2018 Opt. Lett. 41 575

    [26]

    Dong Y, Jin X, Wang K 2016 Opt. Commun. 372 106Google Scholar

    [27]

    杨睿, 於文华, 鲍洋, 张远宪, 普小云 2008 物理学报 57 6412Google Scholar

    Yang R, Yu W H, Bao Y, Zhang Y X, Pu X Y 2008 Acta Phys. Sin. 57 6412Google Scholar

    [28]

    Zhang K, Wang Y, Wu Y 2017 Opt. Lett. 42 2956Google Scholar

    [29]

    Wang M, Zeng S, Meng L, Yang Y, Jin X, Dong Y, Zhang L, Xu W, Wang K 2019 IEEE Photonics J. 11 7105412Google Scholar

    [30]

    Liao J, Wu X, Liu L, Xu L 2016 Opt. Express 24 8574Google Scholar

    [31]

    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H 2017 Appl. Phys. Lett. 11 081105

    [32]

    Chiba A, Fujiwara K, Hanamura R, Matsumoto T 2005 Appl. Phys. Lett. 86 261106Google Scholar

    [33]

    Li B, Xiao Y, Zou C, Jiang X, Liu Y, Sun F, Li Y, Gong Q 2012 Appl. Phys. Lett. 100 021108Google Scholar

  • 图 1  扁长型微瓶腔制备过程图 (a) 对单根光纤放电; (b) 微球腔形成; (c) 第二根光纤对齐; (d) 微瓶腔形成

    Fig. 1.  The fabrication process of prolate microbottle resonator: (a) The single fiber is heated via electrical arc discharge; (b) the microsphere is formed; (c) another fiber is placed to align the microsphere; (d) the microbottle resonator is formed.

    图 2  微瓶腔几何形状示意图及其基本参数

    Fig. 2.  Geometrical schematic and basic parameters of the microbottle resonator.

    图 3  (a)几何轮廓拟合结果; (b)轴向模式(m = 420, p = 1, q = 4)场分布图

    Fig. 3.  (a) Fitted result of geometric outline; (b) axial mode field distributions (m = 420, p = 1, q = 4).

    图 4  (a) 相同轴向谐振模式下对应的角向FSR以及相同角向谐振模式下对应的轴向FSR; (b) z方向上前三阶(q = 0, q = 1, q = 2)轴向模式场分布图

    Fig. 4.  (a) Angular free spectral range (FSR) with the same axial resonant mode and axial FSR with the same angular FSR; (b) the first three order axial mode field distributions (q = 0, q = 1, q = 2).

    图 5  微瓶腔谐振光谱特性探测系统示意图, 插图为微瓶腔与光纤锥波导耦合系统的显微放大图

    Fig. 5.  The detecting system diagram for the resonant spectra characteristic of the microbottle resonators; the illustration is the microscopy enlarged graph of the coupling system consisting of the microbottle resonator and the tapered fiber.

    图 6  粗扫状态下得到的谐振光谱, 图中标记了一阶径向模式下的角向和轴向谐振模式及对应的角向模式FSR和轴向模式FSR

    Fig. 6.  The resonance spectra of the microbottle resonator for different coupling gaps in coarse scanning, the angular and axial resonant mode in the first order radial mode, angular FSR (FSRq,i) and axial FSR (FSRm,i) are marked in the figure.

    图 7  精扫状态下不同耦合间隙得到的谐振光谱 (a)实验操作示意图; (b)−(l)逐渐改变耦合间隙测得的谐振光谱图

    Fig. 7.  The resonance spectra for different coupling gaps in fine scanning: (a) Schematic diagram of experimental operation; (b)−(l) the resonance spectra with the gradually changing gap.

    图 8  选择微瓶腔不同耦合点得到的谐振光谱 (a)实验操作示意图; (b)−(l)逐渐改变微瓶腔耦合点测得的谐振光谱图

    Fig. 8.  The resonance spectra by choosing different coupling points of the microbottle resonator: (a) Schematic diagram of experimental operation; (b)−(l) the resonance spectra with the gradually changing coupling points of the microbottle.

    图 9  (a)−(d)选择不同光纤锥波导直径得到的谐振光谱, 图中标记了不对称的Fano谐振线型

    Fig. 9.  (a)−(d) The resonance spectra by choosing different diameters of the tapered fiber waveguide, asymmetric Fano-like lineshapes are marked in the figure.

    表 1  实验测得的FSR值与理论计算得到的FSR值比较

    Table 1.  Comparison of FSR value of experimental data and theoretical data.

    实验数据FSR/nm理论数据FSR/nm误差%实验数据FSR/nm理论数据FSR/nm误差%
    FSRm,13.7183.6182.76FSRq,11.2321.2042.33
    FSRm,23.7083.6361.98FSRq,21.2411.2062.59
    FSRm,33.7163.6262.48FSRq,31.2391.2082.57
    FSRm,43.7323.6432.44FSRq,41.2381.2102.31
    FSRm,53.6363.6160.55FSRq,51.2371.2122.06
    FSRm,63.7183.6322.37FSRq,61.2391.2142.06
    下载: 导出CSV
  • [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Wang P, Ding M, Murugan G S, Bo L, Guang C, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [3]

    王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁 2015 物理学报 64 164212Google Scholar

    Wang T, Yang X, Liu X F, Lei F C, Gao M, Hu Y Q, Long G L 2015 Acta Phys. Sin. 64 164212Google Scholar

    [4]

    Wang M, Jin X, Li F, Cai B, Yang Y, Zeng S, Wang K 2019 Mater. Lett. 244 211Google Scholar

    [5]

    Lin G, Coikket A, Chembo Y K 2017 Adv. Opt. Photonics 9 828Google Scholar

    [6]

    Shen Z, Zhou Z, Zhou C, Sun F, Guo G, Dong C, Guo G 2015 Photonics Res. 3 243Google Scholar

    [7]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136Google Scholar

    [8]

    Bogaerts W, Heyn P D, Vaerenbergh T V, et al. 2012 Laser Photonics Rev. 6 47

    [9]

    Wang T, He J, Lee C, Niu H 2012 Opt. Express 20 28119Google Scholar

    [10]

    Gu G, Chen L, Fu H, Che K, Cai Z, Xu H 2013 Chin. Opt. Lett. 11 101401Google Scholar

    [11]

    Sumetsky M 2004 Opt. Lett. 29 8Google Scholar

    [12]

    Louyer Y, Meschede D, Rauschenbeutel A 2005 Phys. Rev. A 72 031801Google Scholar

    [13]

    Sumetsky M 2019 Prog. Quantum Electron. 64 1Google Scholar

    [14]

    Pöllinger M, O'Shea D, Warken F, Rauschenbeutel A 2009 Phys. Rev. Lett. 103 053901Google Scholar

    [15]

    Murugan G S, Wilkinson J S, Zervas M N 2009 Opt. Express 17 11816

    [16]

    Murugan G S, Wilkinson J S, Zervas M N 2010 Opt. Lett. 35 1893Google Scholar

    [17]

    Sumetsky M 2013 Phys. Rev. Lett. 111 163901Google Scholar

    [18]

    Dong Y, Jin X, Wang K 2015 App. Opt. 54 4016Google Scholar

    [19]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light Sci. Appl. 6 e17061Google Scholar

    [20]

    Lu Q, Chen X, Xie S, Wu X 2018 Opt. Express 26 20183Google Scholar

    [21]

    Yin Y, Niu Y, Ren M, Wu W, Zhao W, Nan J, Zheng Z, Zhang Y, Ding M 2018 Opt. Lett. 19 4715

    [22]

    Stoian R, Kavine B K, Rosenberger A T 2019 Talanta 194 585Google Scholar

    [23]

    Asano M, Takeuchi Y, Ozdemir S K, Rikizo I, Yang L, Imoto N, Yamamoto T 2016 Opt. Express 24 12082Google Scholar

    [24]

    Chen Y, Zhou Z, Zou C, Shen Z, Guo G, Dong C 2017 Opt. Express 25 16879Google Scholar

    [25]

    Yong Y, Ooka Y, Thompson R, Ward J, Chormaic S N 2018 Opt. Lett. 41 575

    [26]

    Dong Y, Jin X, Wang K 2016 Opt. Commun. 372 106Google Scholar

    [27]

    杨睿, 於文华, 鲍洋, 张远宪, 普小云 2008 物理学报 57 6412Google Scholar

    Yang R, Yu W H, Bao Y, Zhang Y X, Pu X Y 2008 Acta Phys. Sin. 57 6412Google Scholar

    [28]

    Zhang K, Wang Y, Wu Y 2017 Opt. Lett. 42 2956Google Scholar

    [29]

    Wang M, Zeng S, Meng L, Yang Y, Jin X, Dong Y, Zhang L, Xu W, Wang K 2019 IEEE Photonics J. 11 7105412Google Scholar

    [30]

    Liao J, Wu X, Liu L, Xu L 2016 Opt. Express 24 8574Google Scholar

    [31]

    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H 2017 Appl. Phys. Lett. 11 081105

    [32]

    Chiba A, Fujiwara K, Hanamura R, Matsumoto T 2005 Appl. Phys. Lett. 86 261106Google Scholar

    [33]

    Li B, Xiao Y, Zou C, Jiang X, Liu Y, Sun F, Li Y, Gong Q 2012 Appl. Phys. Lett. 100 021108Google Scholar

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [4] 刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨. 基于腔内球差选模产生高阶拉盖尔-高斯模式激光. 物理学报, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [5] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [8] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [9] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [10] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [11] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [12] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择. 物理学报, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [13] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [14] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [15] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [16] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [17] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [18] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [19] 刘劲松, 刘 海, 王 春, 吕健滔, 樊 婷, 王晓东. 二维随机激光器的模式选择及阈值与饱和特性. 物理学报, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [20] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
计量
  • 文章访问数:  7269
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-07-14
  • 上网日期:  2020-11-27
  • 刊出日期:  2020-12-05

/

返回文章
返回