搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层超表面的宽带、高效透射型轨道角动量发生器

高喜 唐李光

引用本文:
Citation:

基于双层超表面的宽带、高效透射型轨道角动量发生器

高喜, 唐李光

Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface

Gao Xi, Tang Li-Guang
PDF
HTML
导出引用
  • 提出一种宽带、高传输效率的双层超表面, 其单元结构是在介质层两边对称刻蚀结构参数相同的十字型金属贴片且将两层超表面沿y方向错位半个周期长度形成. 通过引入y方向的错位, 双层超表面的透射带宽得到大幅度提升. 同时, 采用等效电路理论分析了该双层超表面的带宽展宽机理. 在此基础上, 进一步结合Pancharatnam-Berry相位原理, 实现了宽带轨道角动量波束生成器. 实验和仿真结果表明, 在11—12.8 GHz的频率范围内, 器件能够将左旋圆极化波转换为携带轨道角动量的右旋圆极化波.
    A broadband and high-efficieny bi-layer metasurface is proposed in this paper. The unit cell of the metasurface is formed by symmetrically etching two cross-type metal patches on both sides of a dielectric plate. Furthermore, the two metal patches have a displacement of half a period along the y-axis. By employing the displacement, the transmission bandwidth of the bi-layer metasurface is significantly expanded. In order to obtain a physical insight into bandwidth broadening, a π-type equivalent circuit that presents the electromagnetic coupling between within the bi-layer metasurfaces is successfully extracted to investigate the influence of electromagnetic coupling on transmission performance. The results show that by shifting the metal patches along the y-axis by half a period, the coupling impedance (Z12 or Z21) of bi-layer metasurface can be significantly modified, which further changes the electromagnetic coupling of the bi-layer metasurface. Correspondingly, the impedances Zp and Zs in the π-type circuit are changed to approximately meet the resonant condition of circuit in broadband, resulting in the bandwidth expansion of the proposed device. By using Pancharatnam-Berry phase theory, we redesign the proposed metasurface unit cell into a broadband orbital angular momentum generator. The simulation and measurement results verify that the bi-layer metasurface can convert a left-hand circularly polarized wave into a right-hand circularly polarized wave carrying orbital angular momentum in a frequency range between 11 GHz and 12.8 GHz, demonstrating the performance of device.
      通信作者: 高喜, gao_xi76@163.com
    • 基金项目: 国家自然科学基金 (批准号: 61761010)和广西自然科学基金 (批准号: 2018GXNSFAA281193)资助的课题.
      Corresponding author: Gao Xi, gao_xi76@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61761010) and the Natural Science Foundation of Guangxi, China (Grant No. 2018GXNSFAA281193).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [3]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [4]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [5]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [6]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [7]

    Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [8]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [9]

    Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar

    [10]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [11]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [12]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [13]

    Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar

    [14]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [15]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [16]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar

    [17]

    Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [18]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [19]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar

    [20]

    Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar

    [21]

    Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar

    [22]

    Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [23]

    Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar

    [24]

    Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar

  • 图 1  超表面单元的物理模型 (a)上层结构俯视图; (b)下层结构仰视图; (c)侧视图

    Fig. 1.  Schematic of metasurface unit cell: (a) Top view; (b) bottom view; (c) side view of the unit cell.

    图 2  超表面对线极化波的响应(txxtyyx极化波和y极化波的同极化传输系数的振幅, φxxφyy为同极化传输系数的相位)

    Fig. 2.  Amplitude and phase of co-polarized transmission coefficient, where txx and tyy are amplitudes of co-polarized transmission coefficients for x- and y-polarized incident waves, and φxx and φyy correspond to the phase of txx and tyy.

    图 3  超表面对左旋圆极化波的响应(tL-LtL-R为同极化和交叉极化传输系数, rL-LrL-R为同极化和交叉极化反射系数)

    Fig. 3.  Response for left-hand circularly polarized incident wave, where tL-L and tL-R are co- and cross-polarized transmission coefficients, and rL-L and rL-R are co- and cross-polarized reflective coefficients.

    图 4  (a) y极化波的透射系数; (b) x极化波的透射系数

    Fig. 4.  (a) Transmission coefficient for y-polarized wave; (b) transmission coefficient for x-polarized wave.

    图 5  (a) 等效电路模型; (b) 由等效电路及CST仿真得到的y极化波的S参数

    Fig. 5.  (a) Equivalent circuit model; (b) transmission coefficients for y-polarized incident wave obtained from equivalent circuit (EC) modal and CST simulation.

    图 6  等效电路模型中的阻抗元素 (a) Ly = 0 mm; (b) Ly = 7.5 mm

    Fig. 6.  Impedance elements of equivalent circuit for different Ly: (a) Ly = 0 mm; (b) Ly = 7.5 mm.

    图 7  双层超表面的π型等效电路 (a) 精细结构; (b)总结构

    Fig. 7.  π-type equivalent circuit for bi-layer metasurface: (a) Fine structure; (b) overall framework.

    图 8  不同Ly值的情况下, ZsZp随频率的变化关系 (a) Ly = 0 mm; (b) Ly = 7.5 mm.

    Fig. 8.  Zs and Zp function as frequency for different Ly: (a) Ly = 0 mm; (b) Ly = 7.5 mm.

    图 9  产生OAM波束的超表面 (a) 整体结构排布; (b) 区域分布示意图

    Fig. 9.  Metasurface for generating OAM wave beam: (a) The whole structure; (b) phase distribution.

    图 10  z = 100 mm处, 仿真得到的xoy平面内的电场及相位分布 (a), (b) 11 GHz处电场的振幅和相位; (c), (d) 11.9 GHz处电场的振幅和相位; (e), (f) 12.8 GHz处电场的振幅和相位

    Fig. 10.  Simulated amplitude and phase distributions of electromagnetic wave in xoy plane located at z = 100 mm: (a), (b) At 11 GHz; (c), (d) at 11 GHz; (e), (f) at 12.8 GHz.

    图 11  加工的实物图 (a) 正面; (b) 背面

    Fig. 11.  Photos of fabricated samples: (a) Top view; (b) bottom view.

    图 12  z = 100 mm处, 测试得到的xoy平面内的电场及相位分布 (a), (b) 11 GHz处电场的振幅和相位; (c), (d) 11.9 GHz处电场的振幅和相位; (e), (f) 12.8 GHz处电场的振幅和相位

    Fig. 12.  Measured amplitude and phase distributions of electromagnetic wave in xoy plane located at z = 100 mm: (a), (b) At 11 GHz; (c), (d) at 11 GHz; (e), (f) at 12.8 GHz.

    表 1  与其他传输型超表面的性能对比(${\lambda _0}$为中心频率对应的波长)

    Table 1.  Comparison with other transmissive metasurface.

    参考
    工作
    设计
    原理
    单元的最大
    透射系数/%
    相对带宽(透射
    系数 > 0.8)/%
    厚度/${\lambda _0}$
    [19]P-B
    相位
    9130.05
    [22]9250.05
    [23]9150.05
    [24]9260.07
    本工作9517.9 (> 0.8)
    15.3 (> 0.9)
    0.08
    下载: 导出CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [3]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [4]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [5]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [6]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [7]

    Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [8]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [9]

    Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar

    [10]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [11]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [12]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [13]

    Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar

    [14]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [15]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [16]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar

    [17]

    Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [18]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [19]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar

    [20]

    Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar

    [21]

    Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar

    [22]

    Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [23]

    Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar

    [24]

    Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar

  • [1] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [2] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [3] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [4] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [5] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应. 物理学报, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [6] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [7] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [11] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [12] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [14] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [15] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [17] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [18] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [19] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  6582
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 修回日期:  2020-08-21
  • 上网日期:  2021-01-19
  • 刊出日期:  2021-02-05

/

返回文章
返回