搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外光谱辐射计探测器高阶非线性响应校正方法

孙永丰 徐亮 沈先春 金岭 徐寒杨 成潇潇 王钰豪 刘文清 刘建国

引用本文:
Citation:

红外光谱辐射计探测器高阶非线性响应校正方法

孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国

High-order nonlinear response correction method for infrared radiation detector

Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Jin Ling, Xu Han-Yang, Cheng Xiao-Xiao, Wang Yu-Hao, Liu Wen-Qing, Liu Jian-Guo
PDF
HTML
导出引用
  • 针对傅里叶变换红外光谱辐射计辐射定标需要黑体辐射面充满仪器视场的技术特点, 分析了由于入射光子流较高导致红外探测器产生非线性响应误差的机理. 通过仿真包含非线性误差的黑体辐射数据, 研究了非线性误差对光谱产生的影响, 并根据卷积和交叉迭代两种校正方法, 提出了适合校正高阶非线性响应误差的迭代方法—梯度下降法. 利用傅里叶变换红外光谱辐射计进行辐射定标实验, 对比卷积、交叉迭代和梯度下降法三种校正方法的效果, 结果显示三种校正方法均可有效减小非线性误差, 分别使拟合优度提高了0.15%, 0.29%和0.39%, 梯度下降法校正后的光谱数据更为准确.
    The infrared detector can generate nonlinear response error when the Fourier transform infrared spectrometer is used for implementing the radiometric calibration or observing the high temperature targets. Based on the relationship between the incident radiation intensity and the electron concentration in the optical conduction band, the mechanism of the nonlinear response error caused by the high incident photon flow is analyzed. According to Planck radiation law and interference principle, the effect of nonlinear error on spectrum is studied by simulating blackbody radiation data with nonlinear error. It is found that the nonlinear response with a different order has a different influence region, and the higher-order nonlinear response has a wider influence range and generates a larger nonlinear response error. By the general nonlinear response correction method the nonlinear response coefficient is obtained through constructing the nonlinear response model of the interference data and then the spectral distortion produced by the detector is corrected. According to the convolution iteration method, the polar orbit meteorological satellite CrIS constructs the convolution equation to correct the second-order nonlinear response by taking the low-wave number band of 50-500 cm–1 as the characteristic region. The European Meteorological Agency’s Airborne Infrared Interferometer Evaluation System (ARIES) selected two feature areas, 50-500 cm–1 and 2000-2500 cm–1, and iteratively corrected the second-order and third-order nonlinear response. The gradient descent method is often used to solve the optimization problems of unconstrained multivariate functions. Based on the gradient descent algorithm, an iterative method suitable for correcting the high-order nonlinear response errors is proposed in this paper. In this method, the information about the iteration point is obtained by constructing the nonlinear response function of the high-order detector and setting the appropriate iteration initialization. According to the initial value of the iteration and the information about the known iteration point, the gradient of the iteration variable is calculated to determine the iteration value of the next unknown variable, thus quickly searching for the global minimum point and determining the nonlinear response coefficient. We use Fourier transform infrared spectrometer to carry out radiometric calibration experiment and compare the effects of three correction methods: convolution, cross iteration and gradient descent method. The results show that the three correction methods can effectively reduce the nonlinear error, and improve the fitting extent by 0.15%, 0.29% and 0.39% respectively. The spectral data corrected by gradient descent method are more accurate.
      通信作者: 徐亮, xuliang@aiofm.ac.cn
    • 基金项目: 中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-DQC016)、安徽省重点研究和开发计划(批准号: 1804d08020300)、国家自然科学基金(批准号: 41941011)和国家重点研发计划(批准号: 2016YFC0201002, 2016YFC0803001-08)资助的课题
      Corresponding author: Xu Liang, xuliang@aiofm.ac.cn
    • Funds: Project supported by the Key Research Program of Frontier Sciences of Chinese Academy of Sciences, China (Grant No. QYZDY-SSW-DQC016), the Key R&D Plan of Anhui Province, China (Grant No. 1804d08020300), the National Natural Science Foundation of China (Grant No. 41941011), the National Key R&D Program of China (Grant Nos. 2016YFC0201002, 2016YFC0803001-08)
    [1]

    刘文清, 陈臻懿, 刘建国, 谢品华, 张天舒, 阚瑞峰, 徐亮 2018 中国环境监测 34 1Google Scholar

    Liu W Q, Chen Z R, Liu J G, Xie P H, Zhang T S, Kan R F, Xu L 2018 Envir. Monitor. China 34 1Google Scholar

    [2]

    冯明春, 徐亮, 高闽光, 焦洋, 李相贤, 金岭, 程巳阳, 童晶晶, 魏秀丽, 李胜 2012 红外技术 34 366Google Scholar

    Feng M C, Xu L, Gao M G, Jiao Y, Li X X, Jin L, Cheng S Y, Dong J J, Wei X L, Li S 2012 IR. Tech. 34 366Google Scholar

    [3]

    Shen X C, Ye S B, Xu L, Hu R, Jin L, Xu H Y, Liu J G, Liu W Q 2018 Appl. Opt. 57 5794Google Scholar

    [4]

    焦洋, 徐亮, 高闽光, 冯明春, 金岭, 童晶晶, 李胜 2012 光谱学与光谱分析 32 1754Google Scholar

    Jiao Y, Xu L, Gao M G, Feng M C, Jin L, Dong J J, Li S 2012 Spectrosc. Spect. Anal. 32 1754Google Scholar

    [5]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar

    [6]

    Shao L, Griffiths P R 2008 Anal. Chem. 80 5219Google Scholar

    [7]

    金岭, 徐亮, 高闽光, 童晶晶, 程巳阳, 李相贤 2013 大气与环境光学学报 8 416Google Scholar

    Jin L, Xu L, Gao M G, Dong J J, Cheng S Y, Li X X 2013 J. Atmosph. Environ. Opt. 8 416Google Scholar

    [8]

    Clare J F 2002 Meas. Sci. Technol. 13 38Google Scholar

    [9]

    Carter R O, Lindsay N E, Beduhn D 1990 Appl. Spectrosc. 44 1147Google Scholar

    [10]

    Han Y, Revercomb H, Cromp M, Gu D, Johnson D, Mooney D, Scott D, Strow L, Bingham G, Borg L, Chen Y, DeSlover D, Esplin M, Hagan D, Jin X, Knuteson R, Motteler H, Predina J, Suwinski L, Taylor J, Tobin D, Tremblay D, Wang C, Wang L, Wang L, Zavyalov V 2013 J. Geophys. Res. Atmos. 118 12734Google Scholar

    [11]

    杨敏珠, 邹曜璞, 张磊, 韩昌佩 2017 红外与激光工程 44 272

    Yang M Z, Zou Y F, Zhang L, Han C P 2017 Infrared Laser Eng. 44 272

    [12]

    Fiedler L, Newman S, Bakan S 2005 Appl. Opt. 44 5332Google Scholar

    [13]

    Felix P, Moulin M, Munier B, Portmann J, Reboul J P 1980 IEEE Trans. Electron Devices 27 175Google Scholar

    [14]

    Bartoli F 1974 J. Appl. Phys. 45 2150Google Scholar

    [15]

    Bose 1924 Z. Phys. 26 178Google Scholar

    [16]

    Griffiths P R 2007 Fourier Transform Infrared Spectrometry (2 nd Ed.) (New York: Wiley-Interscience) p88−116

    [17]

    Vorontsov M A, Carhart G W, Ricklin J C 1997 Opt. Lett. 22 907Google Scholar

    [18]

    徐亮, 王君, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈华, 刘志明 2007 大气与环境光学学报 2 218Google Scholar

    Xu L, Wang J, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen H, Liu Z M 2007 J. Atmosph. Environ. Opt. 2 218Google Scholar

    [19]

    Revercomb H E, Buijs H, Howell H B, Laporte D D, Smith W L, Sromovsky L A 1988 Appl. Opt. 27 3210Google Scholar

    [20]

    徐亮, 陈华, 刘建国, 高闽光, 陆亦怀, 刘文清, 张天舒, 魏秀丽, 赵雪松, 朱军 2007 大气与环境光学学报 2 60Google Scholar

    Xu L, Chen H, Liu J G, Gao M G, Lu Y H, Liu W Q, Zhang T S, Wei X L, Zhao X S, Zhu J 2007 J. Atmosph. Environ. Opt. 2 60Google Scholar

  • 图 1  250 ℃理想黑体辐射干涉数据与非线性误差干涉数据仿真(a)及相应的复原光谱图(b)

    Fig. 1.  Interferogram (a) and spectrogram (b) of simulation data and adding error data by 250 ℃ blackbody.

    图 2  不同阶误差响应复原光谱

    Fig. 2.  Spectrogram of different order error response.

    图 3  卷积、交叉迭代与梯度下降法校正非线性响应复原光谱

    Fig. 3.  Corrected spectrogram by convolution, cross iteration and gradient descent.

    图 4  三种校正方法校正光谱与理想光谱的残差

    Fig. 4.  Residual of ideal spectrum and correction spectrum.

    图 5  辐射定标不同温度黑体的复原光谱(纵轴题D.N.表示无量纲的数字信号值)

    Fig. 5.  Spectrum of blackbody at different temperatures in radiometric calibration (D.N. represents digital number).

    图 6  300 ℃黑体辐射光谱校正前后对比图

    Fig. 6.  Spectrum before and after correction at 300 ℃ blackbody.

    图 7  波数为775—785 cm–1时探测器响应与理想黑体辐射的拟合曲线

    Fig. 7.  Fitting curves of blackbody spectrum and measured spectrum with wavenumber at 775—785 cm–1.

    表 1  无大气吸收波段三种校正方法拟合优度对比

    Table 1.  Comparison of R2 of three methods at band without atmospheric absorption.

    Wavenu-mber
    /cm–1
    R2
    Measured
    spectrum
    Convolution
    correction
    spectrum
    Iterative
    correction
    spectrum
    Gradient
    correction
    spectrum
    610—
    620
    0.994030.994830.998290.99997
    770—
    780
    0.994010.994780.998260.99992
    820—
    830
    0.992630.993340.996710.99912
    870—
    880
    0.993350.993930.996720.99974
    910—
    920
    0.993740.994290.997820.99946
    下载: 导出CSV
  • [1]

    刘文清, 陈臻懿, 刘建国, 谢品华, 张天舒, 阚瑞峰, 徐亮 2018 中国环境监测 34 1Google Scholar

    Liu W Q, Chen Z R, Liu J G, Xie P H, Zhang T S, Kan R F, Xu L 2018 Envir. Monitor. China 34 1Google Scholar

    [2]

    冯明春, 徐亮, 高闽光, 焦洋, 李相贤, 金岭, 程巳阳, 童晶晶, 魏秀丽, 李胜 2012 红外技术 34 366Google Scholar

    Feng M C, Xu L, Gao M G, Jiao Y, Li X X, Jin L, Cheng S Y, Dong J J, Wei X L, Li S 2012 IR. Tech. 34 366Google Scholar

    [3]

    Shen X C, Ye S B, Xu L, Hu R, Jin L, Xu H Y, Liu J G, Liu W Q 2018 Appl. Opt. 57 5794Google Scholar

    [4]

    焦洋, 徐亮, 高闽光, 冯明春, 金岭, 童晶晶, 李胜 2012 光谱学与光谱分析 32 1754Google Scholar

    Jiao Y, Xu L, Gao M G, Feng M C, Jin L, Dong J J, Li S 2012 Spectrosc. Spect. Anal. 32 1754Google Scholar

    [5]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 014210Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 014210Google Scholar

    [6]

    Shao L, Griffiths P R 2008 Anal. Chem. 80 5219Google Scholar

    [7]

    金岭, 徐亮, 高闽光, 童晶晶, 程巳阳, 李相贤 2013 大气与环境光学学报 8 416Google Scholar

    Jin L, Xu L, Gao M G, Dong J J, Cheng S Y, Li X X 2013 J. Atmosph. Environ. Opt. 8 416Google Scholar

    [8]

    Clare J F 2002 Meas. Sci. Technol. 13 38Google Scholar

    [9]

    Carter R O, Lindsay N E, Beduhn D 1990 Appl. Spectrosc. 44 1147Google Scholar

    [10]

    Han Y, Revercomb H, Cromp M, Gu D, Johnson D, Mooney D, Scott D, Strow L, Bingham G, Borg L, Chen Y, DeSlover D, Esplin M, Hagan D, Jin X, Knuteson R, Motteler H, Predina J, Suwinski L, Taylor J, Tobin D, Tremblay D, Wang C, Wang L, Wang L, Zavyalov V 2013 J. Geophys. Res. Atmos. 118 12734Google Scholar

    [11]

    杨敏珠, 邹曜璞, 张磊, 韩昌佩 2017 红外与激光工程 44 272

    Yang M Z, Zou Y F, Zhang L, Han C P 2017 Infrared Laser Eng. 44 272

    [12]

    Fiedler L, Newman S, Bakan S 2005 Appl. Opt. 44 5332Google Scholar

    [13]

    Felix P, Moulin M, Munier B, Portmann J, Reboul J P 1980 IEEE Trans. Electron Devices 27 175Google Scholar

    [14]

    Bartoli F 1974 J. Appl. Phys. 45 2150Google Scholar

    [15]

    Bose 1924 Z. Phys. 26 178Google Scholar

    [16]

    Griffiths P R 2007 Fourier Transform Infrared Spectrometry (2 nd Ed.) (New York: Wiley-Interscience) p88−116

    [17]

    Vorontsov M A, Carhart G W, Ricklin J C 1997 Opt. Lett. 22 907Google Scholar

    [18]

    徐亮, 王君, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈华, 刘志明 2007 大气与环境光学学报 2 218Google Scholar

    Xu L, Wang J, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen H, Liu Z M 2007 J. Atmosph. Environ. Opt. 2 218Google Scholar

    [19]

    Revercomb H E, Buijs H, Howell H B, Laporte D D, Smith W L, Sromovsky L A 1988 Appl. Opt. 27 3210Google Scholar

    [20]

    徐亮, 陈华, 刘建国, 高闽光, 陆亦怀, 刘文清, 张天舒, 魏秀丽, 赵雪松, 朱军 2007 大气与环境光学学报 2 60Google Scholar

    Xu L, Chen H, Liu J G, Gao M G, Lu Y H, Liu W Q, Zhang T S, Wei X L, Zhao X S, Zhu J 2007 J. Atmosph. Environ. Opt. 2 60Google Scholar

  • [1] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [2] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [3] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术. 物理学报, 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [4] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度. 物理学报, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [5] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正. 物理学报, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [6] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [7] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [8] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁. 基于Walsh-Hadamard变换的单像素遥感成像. 物理学报, 2016, 65(6): 064201. doi: 10.7498/aps.65.064201
    [9] 闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 大气SO2柱总量遥感反演算法比较分析及验证. 物理学报, 2016, 65(8): 084204. doi: 10.7498/aps.65.084204
    [10] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究. 物理学报, 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [11] 侯祥林, 郑夕健, 张良, 刘铁林. 薄板弯曲大变形高阶非线性偏微分方程推导与优化算法研究. 物理学报, 2012, 61(18): 180201. doi: 10.7498/aps.61.180201
    [12] 顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 多角度偏振遥感相机DPC在轨偏振定标. 物理学报, 2011, 60(7): 070702. doi: 10.7498/aps.60.070702
    [13] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [16] 杜华栋, 黄思训, 石汉青. 高光谱分辨率遥感资料通道最优选择方法及试验. 物理学报, 2008, 57(12): 7685-7692. doi: 10.7498/aps.57.7685
    [17] 顾利萍, 高 雷. 弱非线性复合体中的高阶非线性响应. 物理学报, 2005, 54(2): 987-992. doi: 10.7498/aps.54.987
    [18] 吴云岗, 陶明德. 粘性流体中船行波的完整速度场. 物理学报, 2005, 54(10): 4496-4500. doi: 10.7498/aps.54.4496
    [19] 郎佩琳, 陈 珂, 郑东宁, 张鸣剑, 漆汉宏, 赵忠贤. 高阶高温超导量子干涉器件平面式梯度计的设计. 物理学报, 2004, 53(10): 3530-3534. doi: 10.7498/aps.53.3530
    [20] 袁 坚, 肖先赐. 非线性时间序列的高阶奇异谱分析. 物理学报, 1998, 47(6): 897-905. doi: 10.7498/aps.47.897
计量
  • 文章访问数:  5692
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 修回日期:  2020-11-13
  • 上网日期:  2021-03-04
  • 刊出日期:  2021-03-20

/

返回文章
返回