搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带沿海地区一次局地雷暴消散阶段的云内电场

余海 张廷龙 陈阳 吕伟涛 赵小平 陈洁

引用本文:
Citation:

热带沿海地区一次局地雷暴消散阶段的云内电场

余海, 张廷龙, 陈阳, 吕伟涛, 赵小平, 陈洁

Vertical electrical field during decay stage of local thunderstorm near coastline in tropical island

Yu Hai, Zhang Ting-Long, Chen Yang, Lü Wei-Tao, Zhao Xiao-Ping, Chen Jie
PDF
HTML
导出引用
  • 利用球载电场探空仪于2019年8月12日在海南岛东北部海岸线附近获得的一次局地雷暴消散阶段的云内电场探空资料, 结合S波段天气雷达、地面大气平均电场仪、地闪定位等观测资料, 详细分析了该雷暴的演变过程和电学特征. 由电晕电流反演的垂直电场廓线可知, 云内正、负电场最大值分别位于大约6.3和8.3 km处, 垂直方向上, 云内分布着6个电荷区, 最下部为负电荷区, 往上依次改变极性, 且所有电荷区都位于零度层以上的混合相区域. 由于数据中断, 无法准确判断上部负电荷区上部边界以及其上方的正电荷区信息, 其余四个电荷区分别位于海拔高度6.0—6.3 km, 6.3—6.6 km, 6.9—7.3 km以及7.3—8.3 km之间, 电荷密度分别为–1.84, 1.80, –1.46和1.04 nC/m3. 由已有数据推算, 最上部负电荷区电荷密度应大于–0.51 nC/m3, 其电荷区相对强度仅次于靠近其下部边界的正电荷区, 两者电荷区厚度都超过1 km.
    In order to directly observe the electric field characteristics and study the charge structure in thunderstorms occurring in tropical regions, a balloon-borne strong electric field sounding is used to measure the vertical component of the electric field, temperature within the cloud and real-time location information of the sounding. Based on the principle of corona discharge, two 1-m-long metal probes are used as the sensors to detect the vertical electric field. In the summer of 2019, a result of electric field sounding within a local thunderstorm was obtained in the northeastern coastal area of Hainan Island, China. With the combination of an S-band weather radar, atmospheric electric field instrument and lightning locating network, the charge structure of the thunderstorm is analyzed in detail. The results show that the thunderstorm is a small-scaled local thunderstorm occurring in the afternoon, the sounding starting to be observed at the decay stage of the thunderstorm. In this period, lightning activities is rare, and the variation of ground electric field is similar to that of conventional summer thunderstorms. The whole sounding process lasts 34 min, during which the vertical airflow in the cloud is relatively stable, basically keeping 4–6 m/s. It can be seen from the electric field profile that the charge distribution in the thunderstorm cloud shows a complex charge structure which is composed of six charge regions. A negative charge region is lowermost, and above this the polarity alternates successively from bottom to up, where all charge regions are located above the melting-layer. Due to data interruption, it is impossible to accurately judge the upper boundary of the upper negative charge region and the information about the positive charge region above. The remaining charge regions are located in an altitude range of 6.0–6.3 km, 6.3–6.6 km, 6.9–7.3 km and 7.3–8.3 km, respectively. The charge densities in these four regions are –1.84 nC/m3, 1.80 nC/m3, –1.46 nC/m3, and 1.04 nC/m3, respectively. According to the existing data, the charge density of the uppermost negative charge area should be greater than –0.51 nC/m3. Moreover, the upper positive charge region (the fourth from bottom up) has the largest strength, followed by the negative charge region above it, both of which are more than 1 km in thickness. The electric field intensities in the other charge regions are relatively small. The pairs of positive and negative charge regions at the bottom are slightly different in strength and thickness.
      通信作者: 张廷龙, 55962271@qq.com
    • 基金项目: 海南省自然科学基金创新研究团队项目(批准号: 2017CXTD014)、中国气象科学研究院灾害天气国家重点实验室开放课题(批准号: 2019LASW-B13)和国家自然科学基金(批准号: 41775011)资助的课题
      Corresponding author: Zhang Ting-Long, 55962271@qq.com
    • Funds: Project supported by the Science Fund for Creative Research Groups of the Natural Science Foundation of Hainan Province, China (Grant No. 2017CXTD014), the Open Research Program of the State Key Laboratory for Severe Weather, Chinese Academy of Meteorological Sciences, China (Grant No. 2019LASW-B13), and the National Natural Science Foundation of China (Grant No. 41775011)
    [1]

    Maccready P B, Proudfit A 1965 Q. J. R. Meteorolog. Soc. 91 44Google Scholar

    [2]

    Marshall T C, Rust W D 1991 J. Geophys. Res. 96 22297Google Scholar

    [3]

    Marshall T C, Rust W D 1993 Bull. Am. Meteorol. Soc. 74 2159Google Scholar

    [4]

    Marshall T C, Rust W D, Stolzenburg M 1995 J. Geophys. Res. 100 1001Google Scholar

    [5]

    Bateman M G, Marshall T C, Stolzenburg M, Rust W D 1999 J. Geophys. Res. 104 9643Google Scholar

    [6]

    Zhang T L, Zhao Z K, Zhao Y, Wei C X, Yu H, Zhou F C 2015 Atmos. Res. 164-165 188Google Scholar

    [7]

    Zhang T L, Yu H, Zhou F C, Chen J, Zhang M H 2018 Ann. Geophys. 36 979Google Scholar

    [8]

    张廷龙, 余海, 王军, 张茂华, 周方聪, 陈洁 2019 地球物理学报 62 1591Google Scholar

    Zhang T L, Yu H, Wang J, Zhang M H, Zhou F C, Chen J 2019 Chin. J. Geophys. 62 1591Google Scholar

    [9]

    刘冬霞, 郄秀书, 王志超, 吴学柯, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [10]

    Qie X S, Zhang T L, Chen C P, Zhang G S, Zhang T, Wei W Z 2005 Geophys. Res. Lett. 32 L05814Google Scholar

    [11]

    Qie X, Kong X, Zhang G, Zhang T, Yuan T, Zhou Y, Zhang Y, Wang H, Sun A 2005 Atmos. Res. 76 231Google Scholar

    [12]

    赵阳, 张义军, 董万盛, 张鸿发, 陈成品, 张彤 2004 地球物理学报 47 405Google Scholar

    Zhao Y, Zhang Y J, Dong W S, Zhang H F, Chen C P, Zhang T 2004 Chin. J. Geophys. 47 405Google Scholar

    [13]

    Zhagn Y J, Dong W S, Zhao Y, Zhang G S, Zhang H F, Chen C P, Zhang T 2004 Sci. China, Ser. D Earth Sci. 47 108Google Scholar

    [14]

    Zhang Y J, Meng Q, Lu W T, Paul K, Liu X S, Zhou X J 2006 Chin. Sci. Bull. 51 198Google Scholar

    [15]

    Cui H, Qie X, Zhang Q, Zhang T, Zhang G, Yang J 2009 Atmos. Res. 91 425Google Scholar

    [16]

    Zhang T L, Qie X S, Yuan T, Zhang G S, Zhang T, Zhao Y 2009 Atmos. Res. 92 475Google Scholar

    [17]

    Zhao Z K, Qie X S, Zhang T L, Zhang T, Zhang H F, Wang Y, She Y, Sun B L, Wang H B 2009 Chin. Sci Bull. 55 872Google Scholar

    [18]

    李亚珺, 张广庶, 文军, 王彦辉, 张彤, 范祥鹏, 武斌 2012 地球物理学报 55 3203Google Scholar

    Li Y J, Zhang G S, Wen J, Wang Y H, Zhang T, Fan X P, Wu B 2012 Chin. J. Geophys. 55 3203Google Scholar

    [19]

    Li Y J, Zhang G S, Wen J, Wang D H, Wang Y H, Zhang T, Fan X P, Wu B 2013 Atmos. Res. 134 137Google Scholar

    [20]

    Takahashi T 1978 J. Atmos. Sci. 35 1536Google Scholar

    [21]

    Saunders C P R, Keith W D, MIitzeva R P 1991 J. Geophys. Res. 96 11007Google Scholar

    [22]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949Google Scholar

    [23]

    Mansell E R, MacGorman D R, Ziegler G L, Straka J M 2005 J. Geophys. Res. 110 D12101Google Scholar

    [24]

    Winn W P, Moore C B, Holmes C R 1981 J. Geophys. Res. 86 1187Google Scholar

    [25]

    Marshall T C, Winn W P 1982 J. Geophys. Res. 87 7141Google Scholar

    [26]

    Marshall T C, Stolzenburg M 1998 J. Geophys. Res. 103 19769Google Scholar

    [27]

    Bateman M G, Rust W D, Smull B F, Marshall T C 1995 J. Geophys. Res. 100 16341Google Scholar

    [28]

    Bruning E C, Rust W D, Schuur T J, MacGorman D R, Krehbiel P R, Rison W 2007 Mon. Wea. Rev. 135 2525Google Scholar

    [29]

    Jayaratne E R, Saunders C P R, Hallett J 1983 Q. J. R. Meteorolog. Soc. 109 609Google Scholar

    [30]

    Hou T J, Lei H C, Hu Z X 2009 Atmos. Res. 91 281Google Scholar

    [31]

    Liu D X, Qie X S, Peng L, Li W L 2014 Adv. Atmos. Sci. 31 1022Google Scholar

    [32]

    李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 物理学报 61 059202Google Scholar

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202Google Scholar

    [33]

    李江林, 余晔, 李万莉, 李亚珺 2019 地球物理学报 62 2366Google Scholar

    Li J L, Yu Y, Li W L, Li Y J 2019 Chin. J. Geophys. 62 2366Google Scholar

    [34]

    Rust W D, Marshall T C 1996 J. Geophys. Res. 101 23499Google Scholar

    [35]

    Stolzenburg M, Rust W D, Smull B F, Marshall T C 1998 J. Geophys. Res. 103 14059Google Scholar

    [36]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14079Google Scholar

    [37]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14097Google Scholar

    [38]

    张义军, 徐良韬, 郑栋, 王飞 2014 应用气象学报 25 513Google Scholar

    Zhang Y J, Xu L T, Zheng D, Wang F 2014 J. Appl. Meteor. Sci. 25 513Google Scholar

    [39]

    Tessendorf S A, Wiens K C, Rutledge S A 2007 Mon. Wea. Rev. 135 3665Google Scholar

    [40]

    Tessendorf S A, Rutledge S A, Wiens K C 2007 Mon. Wea. Rev. 135 3682Google Scholar

    [41]

    Bruning E C, Rust W D, MacGorman D R, Biggerstaff M I, Schuur T J 2010 Mon. Wea. Rev. 138 3740Google Scholar

    [42]

    Bruning E C, Weiss S A, Calhoun K M 2014 Atmos. Res. 135-136 274Google Scholar

    [43]

    Fuchs B R, Rutledge S A, Bruning E C, et al. 2015 J. Geophys. Res. 120 6575Google Scholar

    [44]

    Qie X S, Zhang Y J 2019 Adv. Atmos. Sci. 36 994Google Scholar

    [45]

    Takahashi T, Tajiri T, Sonol Y 1999 J. Atmos. Sci. 56 1561Google Scholar

    [46]

    Suzuki T, Matsudo Y, Asano T, Hayakawa M, Michimoto K 2011 J. Geophys. Res. 116 D06205Google Scholar

    [47]

    Takahashi T, Isono K 1967 Tellus 19 420Google Scholar

    [48]

    Takahashi T 1975 J. Atmos. Sci. 32 123Google Scholar

    [49]

    Takahashi T 1978 Mon. Wea. Rev. 106 1598Google Scholar

    [50]

    Takahashi T, Keenan T D 2004 J. Geophys. Res. 109 D16208Google Scholar

    [51]

    Mohanty M, Kumar P P 2004 Indian J. Radio. Space. Phys. 33 310

    [52]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 72

    [53]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 107

    [54]

    余海, 张廷龙, 高燚, 劳小青, 韦昌雄, 范祥鹏 2016 中国科学院大学学报 33 195Google Scholar

    Yu H, Zhang T L, Gao Y, Lao X Q, Wei C X, Fan X P 2016 Journal of University of Chinese Academy of Sciences 33 195Google Scholar

    [55]

    赵中阔, 郄秀书, 张广庶, 张廷龙, 张彤, 郭凤霞, 窦志强 2008 高原气象 27 881

    Zhao Z K, Qie X S, Zhang G S, Zhang T L, Zhang T, Guo F X, Dou Z Q 2008 Plateau. Meteor. 27 881

    [56]

    冯桂力, 郄秀书, 吴书君 2008 大气科学 32 289Google Scholar

    Feng G L, Qie X S, Wu S J 2008 Chin. J. Atmos. Sci. 32 289Google Scholar

    [57]

    Zhang T L, Zhao G, Wei C X, Gao Y, Yu H, Zhou F C 2017 J. Atmos. Solar-Terr. Phys. 154 226Google Scholar

    [58]

    肖艳娇, 刘黎平 2006 气象学报 64 647Google Scholar

    Xiao Y J, Liu L P 2006 Acta Meteor. Sin. 64 647Google Scholar

    [59]

    Stolzenburg M, marshall T C 1994 J. Geophys. Res. 99 25921Google Scholar

    [60]

    Marshall T C, Stolzenburg M, Krehbiel P R, Lund N R, Maggio C R 2009 J. Geophys. Res. 114 D02209Google Scholar

  • 图 1  (a)探空观测设备分布图; (b) (a)图方框部分放大图. ▲: 探空点; ☆: ADTD定位子站; ★: 雷达站和ADTD定位子站

    Fig. 1.  (a) Distribution of Sounding observation in Hainan Province; (b) enlarged view of the section in the square of picture (a). ▲: Sounding site; ☆: Substations of ADTD; ★: Radar site and ADTD substation

    图 2  8月12日08时850 hPa风场和相对湿度以及500 hPa等高线(北京时间, BJT)

    Fig. 2.  The wind, relative humidity (850 hPa) and geopotential height field (500 hPa) at 8:00 (BJT) on August 12, 2019.

    图 3  雷暴不同阶段的回波强度(高度2 km). ▲: 探空点

    Fig. 3.  Radar echo intensity of thunderstorm in different stages ▲: Sounding site

    图 4  探空气球路径 (a) 气球飞行高度随时间变化曲线; (b) 水平投影; (c) 东西方向的立体投影; (d) 南北方向的立体投影; (e) 空间飞行轨迹

    Fig. 4.  The Sounding path: (a) Height-time plots; (b) plan view; (c) west-east ward vertical projection; (d) north-south ward vertical projection; (e) height-distance plots.

    图 5  探空路径及雷达回波特征(18:07) (a) 回波平面图, 直线AB为垂直剖面位置; (b) 探空路径与回波垂直剖面叠加. 其中▲为探空点位置

    Fig. 5.  Sounding path and the corresponding Radar echo characters (18:07): (a) Radar echo characters during the sounding stage; (b) superposition image of radar echo vertical cross section of line AB in Fig. (a) and sounding path. ▲: Sounding site.

    图 6  8月12日探空分析结果 (a) 气球上升速度; (b) 电晕电流; (c) 空中电场(E)和温度(T); (d) 电荷密度

    Fig. 6.  Sounding results in thunderstorm on August 12, 2019: (a) Ascending velocity; (b) corona current; (c) E-field (E) and temperature (T); (d) charge density.

    图 7  雷暴地面电场演变特征, 其中红色竖线之间区域为探空观测阶段

    Fig. 7.  Evolution characteristics of ground E-field of thunderstorm, in which the duration between two red vertical lines was the sounding stage.

    图 8  18:18时刻雷达回波与其前后10 min地闪活动叠加图.+:正地闪, ×:负地闪

    Fig. 8.  Superposition image of radar echo reflectivity at 18:18 and CGs flashes for 10 minutes before and after the moment. +: Positive CGs flashes, ×:Negative CGs flashes.

  • [1]

    Maccready P B, Proudfit A 1965 Q. J. R. Meteorolog. Soc. 91 44Google Scholar

    [2]

    Marshall T C, Rust W D 1991 J. Geophys. Res. 96 22297Google Scholar

    [3]

    Marshall T C, Rust W D 1993 Bull. Am. Meteorol. Soc. 74 2159Google Scholar

    [4]

    Marshall T C, Rust W D, Stolzenburg M 1995 J. Geophys. Res. 100 1001Google Scholar

    [5]

    Bateman M G, Marshall T C, Stolzenburg M, Rust W D 1999 J. Geophys. Res. 104 9643Google Scholar

    [6]

    Zhang T L, Zhao Z K, Zhao Y, Wei C X, Yu H, Zhou F C 2015 Atmos. Res. 164-165 188Google Scholar

    [7]

    Zhang T L, Yu H, Zhou F C, Chen J, Zhang M H 2018 Ann. Geophys. 36 979Google Scholar

    [8]

    张廷龙, 余海, 王军, 张茂华, 周方聪, 陈洁 2019 地球物理学报 62 1591Google Scholar

    Zhang T L, Yu H, Wang J, Zhang M H, Zhou F C, Chen J 2019 Chin. J. Geophys. 62 1591Google Scholar

    [9]

    刘冬霞, 郄秀书, 王志超, 吴学柯, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [10]

    Qie X S, Zhang T L, Chen C P, Zhang G S, Zhang T, Wei W Z 2005 Geophys. Res. Lett. 32 L05814Google Scholar

    [11]

    Qie X, Kong X, Zhang G, Zhang T, Yuan T, Zhou Y, Zhang Y, Wang H, Sun A 2005 Atmos. Res. 76 231Google Scholar

    [12]

    赵阳, 张义军, 董万盛, 张鸿发, 陈成品, 张彤 2004 地球物理学报 47 405Google Scholar

    Zhao Y, Zhang Y J, Dong W S, Zhang H F, Chen C P, Zhang T 2004 Chin. J. Geophys. 47 405Google Scholar

    [13]

    Zhagn Y J, Dong W S, Zhao Y, Zhang G S, Zhang H F, Chen C P, Zhang T 2004 Sci. China, Ser. D Earth Sci. 47 108Google Scholar

    [14]

    Zhang Y J, Meng Q, Lu W T, Paul K, Liu X S, Zhou X J 2006 Chin. Sci. Bull. 51 198Google Scholar

    [15]

    Cui H, Qie X, Zhang Q, Zhang T, Zhang G, Yang J 2009 Atmos. Res. 91 425Google Scholar

    [16]

    Zhang T L, Qie X S, Yuan T, Zhang G S, Zhang T, Zhao Y 2009 Atmos. Res. 92 475Google Scholar

    [17]

    Zhao Z K, Qie X S, Zhang T L, Zhang T, Zhang H F, Wang Y, She Y, Sun B L, Wang H B 2009 Chin. Sci Bull. 55 872Google Scholar

    [18]

    李亚珺, 张广庶, 文军, 王彦辉, 张彤, 范祥鹏, 武斌 2012 地球物理学报 55 3203Google Scholar

    Li Y J, Zhang G S, Wen J, Wang Y H, Zhang T, Fan X P, Wu B 2012 Chin. J. Geophys. 55 3203Google Scholar

    [19]

    Li Y J, Zhang G S, Wen J, Wang D H, Wang Y H, Zhang T, Fan X P, Wu B 2013 Atmos. Res. 134 137Google Scholar

    [20]

    Takahashi T 1978 J. Atmos. Sci. 35 1536Google Scholar

    [21]

    Saunders C P R, Keith W D, MIitzeva R P 1991 J. Geophys. Res. 96 11007Google Scholar

    [22]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949Google Scholar

    [23]

    Mansell E R, MacGorman D R, Ziegler G L, Straka J M 2005 J. Geophys. Res. 110 D12101Google Scholar

    [24]

    Winn W P, Moore C B, Holmes C R 1981 J. Geophys. Res. 86 1187Google Scholar

    [25]

    Marshall T C, Winn W P 1982 J. Geophys. Res. 87 7141Google Scholar

    [26]

    Marshall T C, Stolzenburg M 1998 J. Geophys. Res. 103 19769Google Scholar

    [27]

    Bateman M G, Rust W D, Smull B F, Marshall T C 1995 J. Geophys. Res. 100 16341Google Scholar

    [28]

    Bruning E C, Rust W D, Schuur T J, MacGorman D R, Krehbiel P R, Rison W 2007 Mon. Wea. Rev. 135 2525Google Scholar

    [29]

    Jayaratne E R, Saunders C P R, Hallett J 1983 Q. J. R. Meteorolog. Soc. 109 609Google Scholar

    [30]

    Hou T J, Lei H C, Hu Z X 2009 Atmos. Res. 91 281Google Scholar

    [31]

    Liu D X, Qie X S, Peng L, Li W L 2014 Adv. Atmos. Sci. 31 1022Google Scholar

    [32]

    李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 物理学报 61 059202Google Scholar

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202Google Scholar

    [33]

    李江林, 余晔, 李万莉, 李亚珺 2019 地球物理学报 62 2366Google Scholar

    Li J L, Yu Y, Li W L, Li Y J 2019 Chin. J. Geophys. 62 2366Google Scholar

    [34]

    Rust W D, Marshall T C 1996 J. Geophys. Res. 101 23499Google Scholar

    [35]

    Stolzenburg M, Rust W D, Smull B F, Marshall T C 1998 J. Geophys. Res. 103 14059Google Scholar

    [36]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14079Google Scholar

    [37]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14097Google Scholar

    [38]

    张义军, 徐良韬, 郑栋, 王飞 2014 应用气象学报 25 513Google Scholar

    Zhang Y J, Xu L T, Zheng D, Wang F 2014 J. Appl. Meteor. Sci. 25 513Google Scholar

    [39]

    Tessendorf S A, Wiens K C, Rutledge S A 2007 Mon. Wea. Rev. 135 3665Google Scholar

    [40]

    Tessendorf S A, Rutledge S A, Wiens K C 2007 Mon. Wea. Rev. 135 3682Google Scholar

    [41]

    Bruning E C, Rust W D, MacGorman D R, Biggerstaff M I, Schuur T J 2010 Mon. Wea. Rev. 138 3740Google Scholar

    [42]

    Bruning E C, Weiss S A, Calhoun K M 2014 Atmos. Res. 135-136 274Google Scholar

    [43]

    Fuchs B R, Rutledge S A, Bruning E C, et al. 2015 J. Geophys. Res. 120 6575Google Scholar

    [44]

    Qie X S, Zhang Y J 2019 Adv. Atmos. Sci. 36 994Google Scholar

    [45]

    Takahashi T, Tajiri T, Sonol Y 1999 J. Atmos. Sci. 56 1561Google Scholar

    [46]

    Suzuki T, Matsudo Y, Asano T, Hayakawa M, Michimoto K 2011 J. Geophys. Res. 116 D06205Google Scholar

    [47]

    Takahashi T, Isono K 1967 Tellus 19 420Google Scholar

    [48]

    Takahashi T 1975 J. Atmos. Sci. 32 123Google Scholar

    [49]

    Takahashi T 1978 Mon. Wea. Rev. 106 1598Google Scholar

    [50]

    Takahashi T, Keenan T D 2004 J. Geophys. Res. 109 D16208Google Scholar

    [51]

    Mohanty M, Kumar P P 2004 Indian J. Radio. Space. Phys. 33 310

    [52]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 72

    [53]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 107

    [54]

    余海, 张廷龙, 高燚, 劳小青, 韦昌雄, 范祥鹏 2016 中国科学院大学学报 33 195Google Scholar

    Yu H, Zhang T L, Gao Y, Lao X Q, Wei C X, Fan X P 2016 Journal of University of Chinese Academy of Sciences 33 195Google Scholar

    [55]

    赵中阔, 郄秀书, 张广庶, 张廷龙, 张彤, 郭凤霞, 窦志强 2008 高原气象 27 881

    Zhao Z K, Qie X S, Zhang G S, Zhang T L, Zhang T, Guo F X, Dou Z Q 2008 Plateau. Meteor. 27 881

    [56]

    冯桂力, 郄秀书, 吴书君 2008 大气科学 32 289Google Scholar

    Feng G L, Qie X S, Wu S J 2008 Chin. J. Atmos. Sci. 32 289Google Scholar

    [57]

    Zhang T L, Zhao G, Wei C X, Gao Y, Yu H, Zhou F C 2017 J. Atmos. Solar-Terr. Phys. 154 226Google Scholar

    [58]

    肖艳娇, 刘黎平 2006 气象学报 64 647Google Scholar

    Xiao Y J, Liu L P 2006 Acta Meteor. Sin. 64 647Google Scholar

    [59]

    Stolzenburg M, marshall T C 1994 J. Geophys. Res. 99 25921Google Scholar

    [60]

    Marshall T C, Stolzenburg M, Krehbiel P R, Lund N R, Maggio C R 2009 J. Geophys. Res. 114 D02209Google Scholar

  • [1] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [2] 张坤, 罗涛, 王菲菲, 孙刚, 刘庆, 青春, 李学彬, 翁宁泉, 朱文越. 基于探空数据分析低云对大气折射率结构常数的影响. 物理学报, 2022, 71(8): 089202. doi: 10.7498/aps.71.20211792
    [3] 张廷龙, 余海, 陈阳, 赵小平, 陈洁, 文中海, 李哲, 蒋贤玲, 张茂华. 1907号台风“韦帕”登陆期间眼壁区的垂直电场探空观测. 物理学报, 2021, 70(13): 139201. doi: 10.7498/aps.70.20202183
    [4] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [5] 孙凌, 郄秀书, Edward R. Mansell, 陈志雄, 徐燕, 蒋如斌, 孙竹玲. 雷暴云内电场力对起电和电荷结构的反馈作用. 物理学报, 2018, 67(16): 169201. doi: 10.7498/aps.67.20180505
    [6] 李丽丽, 张晓虹, 王玉龙, 国家辉. 电场和温度对聚合物空间电荷陷阱性能的影响. 物理学报, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [7] 张林成, 陈钢进, 肖慧明, 蔡本晓, 黄华, 吴玲. 毫米级栅型电场分布FEP薄膜驻极体的制备及其电荷存储性能研究. 物理学报, 2015, 64(23): 237701. doi: 10.7498/aps.64.237701
    [8] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [9] 张志森, 封国林, 龚志强, 吴浩. 热带海洋与中低纬大气相互作用的信息传输特征分析. 物理学报, 2014, 63(2): 029202. doi: 10.7498/aps.63.029202
    [10] 刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘. 飑线系统中的闪电辐射源分布特征及云内电荷结构讨论. 物理学报, 2013, 62(21): 219201. doi: 10.7498/aps.62.219201
    [11] 陶建军, 胡向辉. 热带低层弱涡旋中扰动的快速发展及其向中心传播的特征. 物理学报, 2012, 61(16): 169202. doi: 10.7498/aps.61.169202
    [12] 张翰, 管玉平. 登陆我国大陆热带气旋的纬度分布特征. 物理学报, 2012, 61(16): 169203. doi: 10.7498/aps.61.169203
    [13] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [14] 李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰. 基于RAMS V6.0的非感应起电机制评估和雷暴初期电荷结构模拟. 物理学报, 2012, 61(5): 059202. doi: 10.7498/aps.61.059202
    [15] 平凡, 罗哲贤. 热带对流活动日变化的模拟研究. 物理学报, 2009, 58(6): 4319-4327. doi: 10.7498/aps.58.4319
    [16] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源. 物理学报, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [17] 苟学强, 张义军, 董万胜. 基于小波的雷暴强放电前地面电场的多重分形分析. 物理学报, 2006, 55(2): 957-961. doi: 10.7498/aps.55.957
    [18] 方 健, 乔 明, 李肇基. 电荷非平衡super junction结构电场分布. 物理学报, 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
    [19] 莫嘉琪, 林一骅, 林万涛. 热带海-气耦合振子的摄动解. 物理学报, 2005, 54(9): 3971-3974. doi: 10.7498/aps.54.3971
    [20] 孙万钧, 周忠祥, 姜永远, 李焱, 许克彬, 祝桂芝. 外加电场对掺杂KNSBN晶体空间电荷场的影响. 物理学报, 1996, 45(6): 940-945. doi: 10.7498/aps.45.940
计量
  • 文章访问数:  3916
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-02
  • 修回日期:  2020-11-26
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回