搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界对石墨烯量子点非线性光学性质的影响

李海鹏 周佳升 吉炜 杨自强 丁慧敏 张子韬 沈晓鹏 韩奎

引用本文:
Citation:

边界对石墨烯量子点非线性光学性质的影响

李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎

Effect of edge on nonlinear optical property of graphene quantum dots

Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui
PDF
HTML
导出引用
  • 石墨烯作为一种新型非线性光学材料, 在光子学领域具有重要的应用前景, 引起研究人员的极大兴趣. 本文运用量子化学计算方法研究了边界引入碳碳双键(C=C)和掺杂环硼氮烷(B3N3)环对石墨烯量子点非线性光学性质和紫外-可见吸收光谱的影响. 研究发现, 扶手椅边界上引入C=C双键后, 六角形石墨烯量子点分子结构对称性降低, 电荷分布对称性发生破缺, 导致分子二阶非线性光学活性增强. 石墨烯量子点在从扶手椅型边界向锯齿型边界过渡的过程中, 随着边界C=C双键数目的增加, 六角形石墨烯量子点和B3N3掺杂六角形石墨烯量子点的极化率和第二超极化率分别呈线性增加. 此外, 边界对石墨烯量子点的吸收光谱也有重要影响. 无论是石墨烯量子点还是B3N3掺杂石墨烯量子点, 扶手椅型边界上引入C=C双键导致最高占据分子轨道能级升高, 最低未占分子轨道能级的降低, 前线分子轨道能级差减小, 因而最大吸收波长发生了红移. 中心掺杂B3N3环后会增大石墨烯量子点的分子前线轨道能级差, 导致B3N3掺杂后的石墨烯量子点紫外-可见吸收光谱发生蓝移. 本文研究为边界修饰调控石墨烯量子点非线性光学响应提供了一定的理论指导.
    Graphene is a two-dimensional material with single-layer honeycomb lattice structure formed by sp2 hybrid connection of carbon atoms. Graphene has excellent optical, electrical, thermal and mechanical properties, and it is considered to be an ideal material for future flexible optoelectronic devices. In recent years, the nonlinear optical properties and regulation of graphene nanostructures have attracted experimental and theoretical interest. Graphene has good delocalization of π-electrons and its unique plane structure, showing good nonlinear optical properties. Graphene quantum dots can be regarded as small graphene nanoflakes. Their unique electronic structure is closely related to the non-bond orbitals on the boundary/edge. Therefore, it is very important to study the boundary/edge effect on the electronic and optical properties of nanographene. In this paper, effects of the number of edge C=C double bonds and Borazine (B3N3) doping on the nonlinear optical properties and UV-Vis absorption spectrum of graphene quantum dots are studied by the quantum chemical calculation methods, respectively. It is found that the symmetry of hexagonal graphene quantum dots decreases and the symmetry of charge distribution is broken when C=C double bond is introduced into the armchair edge, which leads the second-order nonlinear optical activity to be enhanced. During the transition from armchair to zigzag edge, the polarizability and the second hyperpolarizability of hexagonal graphene quantum dots and B3N3-doped graphene quantum dots increase linearly with the number of introduced C=C double bonds incrrasing. In addition, the edge also has an important influence on the absorption spectrum of graphene quantum dots. For graphene quantum dots and B3N3-doped graphene quantum dots, the introduction of C=C double bond at the armchair edge increases the highest occupied molecular orbital energy level and also reduces the lowest unoccupied molecular orbital energy level, which reduces the energy gap between the frontier molecular orbitals, and thus resulting in the red-shift of the maximum absorption wavelength. The doping of B3N3 ring will increase the energy gap between molecular frontier orbitals of graphene quantum dots, leading the UV-Vis absorption spectrum of graphene quantum dots to be blue-shifted. This study provides theoretical guidance for controlling the nonlinear optical response of graphene quantum dots by edge modification.
      通信作者: 李海鹏, haipli@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504418)和中央高校基本科研业务费项目(批准号: 2019ZDPY16)资助的课题
      Corresponding author: Li Hai-Peng, haipli@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504418) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2019ZDPY16)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li H, Yu X, Shen X, Tang G, Han K 2019 J. Phys. Chem. C 123 20020Google Scholar

    [3]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [4]

    白家豪, 郭建刚 2020 物理学报 69 056201Google Scholar

    Bai J H, Guo J G 2020 Acta Phys. Sin. 69 056201Google Scholar

    [5]

    Guo Z, Zhang D, Gong X G 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [6]

    蔡乐, 王华平, 于贵 2016 物理学进展 36 21Google Scholar

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21Google Scholar

    [7]

    徐小志, 余佳晨, 张智宏, 刘开辉 2017 科学通报 62 2220Google Scholar

    Xu X Z, Yu J C, Zhang Z H, Liu K H 2017 Chinese Sci. Bull. 62 2220Google Scholar

    [8]

    张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar

    [9]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106Google Scholar

    [10]

    Ouyang F P, Chen L, Jin X, Zhang H 2011 Chin. Phys. Lett. 28 047304Google Scholar

    [11]

    Otero N, El-kelany K E, Pouchan C, Rérata M, Karamanis P 2016 Phys.Chem.Chem.Phys. 18 25315Google Scholar

    [12]

    Zhang M, Li G, Li L 2014 J. Mater. Chem. C 2 1482Google Scholar

    [13]

    Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M J, Schaub R, Bettinger H F 2015 Angew. Chem. Int. Ed. 54 8284Google Scholar

    [14]

    You J W, Bongu S R, Bao Q, Panoiu N C 2018 Nanophotonics 8 63Google Scholar

    [15]

    Bonifazi D, Fasano F, Marinelli D 2015 Chem. Comm. 51 15222Google Scholar

    [16]

    Dosso J, Marinelli D, Demitri N, Bonifazi D 2019 ACS Omega 4 9343Google Scholar

    [17]

    Kan M, Li Y, Sun Q 2016 WIREs Comput. Mol. Sci. 6 65Google Scholar

    [18]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechn. 4 839Google Scholar

    [19]

    Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W, Song J H, Seo M K, Par H G 2017 Nano Lett. 17 1892Google Scholar

    [20]

    Sun Z P, Hasan T, Torrisi F 2010 ACS Nano 4 803Google Scholar

    [21]

    Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P, Wu Y X 2017 Carbon 122 756Google Scholar

    [22]

    Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M 2013 Phys. Rev. X 3 021014Google Scholar

    [23]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [24]

    Karamanis P, Otero N, Pouchan C 2014 J. Am. Chem. Soc. 136 7464Google Scholar

    [25]

    Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T, Wu S W 2018 Nat. Photonics 12 430Google Scholar

    [26]

    Liaros N, Bourlinos A B, Zboril R, Couris S 2013 Opt. Exp. 21 21027Google Scholar

    [27]

    Bendikov M, Duong H M, Starkey K, Houk K N, Carter E A, Wudl F 2004 J. Am. Chem. Soc. 126 7416Google Scholar

    [28]

    Hachmann J, Dorando J J, Aviles M, Chan K L 2007 J. Chem. Phys. 127 134309Google Scholar

    [29]

    Zhang B X, Gao H, Li X L 2014 New J. Chem. 38 4615Google Scholar

    [30]

    Zheng X Q, Feng M, Li Z G, Song Y L, Zhang H B 2014 J. Mater. Chem. C 2 4121Google Scholar

    [31]

    Hu Y Y, Li W Q, Li Y, Feng J K, Tian W Q 2016 Can. J. Chem. 94 620Google Scholar

    [32]

    Otero N, Karamanis P, El-Kelany K E, Rérat M, Maschio L, Civalleri B, Kirtman B 2017 J. Phys. Chem. C 121 709Google Scholar

    [33]

    Otero N, Pouchan C, Karamanis P 2017 J. Mater. Chem. C 5 8273Google Scholar

    [34]

    Karamanis P, Otero N, Pouchan C 2015 J. Phys. Chem. C 119 11872Google Scholar

    [35]

    Li H, Zhang Y, Bi Z, Xu R, Li M, Shen X, Tang G, Han K 2017 Mol. Phys. 115 3164Google Scholar

    [36]

    李海鹏, 韩奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白磊 2006 物理学报 55 1827Google Scholar

    Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827Google Scholar

    [37]

    梁飞, 林哲帅, 吴以成 2018 物理学报 67 114203Google Scholar

    Liang F, Lin Z S, Wu Y C 2018 Acta Phys. Sin. 67 114203Google Scholar

    [38]

    马勇, 邹斌, 李宗良, 王传奎, 罗毅 2006 物理学报 55 1974Google Scholar

    Ma Y, Zou B, Li Z L, Wang C K, Luo Y 2006 Acta Phys. Sin. 55 1974Google Scholar

    [39]

    Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)

    [40]

    王磊, 胡慧芳, 韦建卫, 曾晖, 于滢潆, 王志勇, 张丽娟 2008 物理学报 57 2987Google Scholar

    Wang L, Hu H F, Wei J W, Zeng H, Yu Y Y, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987Google Scholar

    [41]

    Zhang Y P, Ma J M, Yang Y S, Ru J X, Liu X Y, Ma Y, Guo H C 2019 Spectrochim. Acta A 217 60Google Scholar

  • 图 1  石墨烯量子点和B3N3掺杂石墨烯量子点的结构

    Fig. 1.  Structures of graphene quantum dots and B3N3-doped graphene quantum dots.

    图 2  GQD-n和B3N3-GQD-n的极化率α

    Fig. 2.  The polarizabilities α of GQD-n and B3N3 -GQD-n.

    图 3  GQD-n和B3N3-GQD-n的第二超极化率γ

    Fig. 3.  The second hyperpolarizabilities γ of GQD-n and B3N3-GQD-n.

    图 4  GQD-0, GQD-6, B3N3-GQD-0和B3N3-GQD-6的紫外-可见吸收光谱

    Fig. 4.  Ultraviolet-visible absorption spectra of GQD-0, GQD-6, B3N3-GQD-0 and B3N3-GQD-6.

    表 1  GQD-n和B3N3-GQD-n的极化率α、第一超极化率β和第二超极化率γ计算值

    Table 1.  Calculated polarizability α, first hyperpolarizability β, second hyperpolarizability γ of GQD-n and B3N3-GQD-n.

    分子α/(10–39 C2·m2·J–1)β/(10–51 C3·m3·J–2)γ/(10–59 C4·m4·J–3)
    GQD-08.85601.807
    GQD-19.4554.1672.069
    GQD-210.0704.6302.312
    GQD-310.6667.0372.521
    GQD-411.2988.5052.875
    GQD-511.9282.3323.185
    GQD-612.54903.380
    B3N3-GQD-08.20601.381
    B3N3-GQD-18.8033.8711.735
    B3N3-GQD-29.4130.3302.011
    B3N3-GQD-310.01910.8752.310
    B3N3-GQD-410.6296.3872.689
    B3N3-GQD-511.2599.2933.157
    B3N3-GQD-611.88303.446
    下载: 导出CSV

    表 2  GQD-n和B3N3-GQD-n的HOMO能级、LUMO能级、HOMO-LUMO能级差(HLG)和最大吸收波长λmax计算值

    Table 2.  Calculated HOMO energy level, LUMO energy level, HOMO-LUMO energy gap (HLG) and maximum absorption wavelength λmax of GQD-n and B3N3-GQD-n.

    分子HOMO/eVLUMO/eVHLG/eVλmax/nm
    GQD-0–6.606–0.9955.611308.6
    GQD-1–6.324–1.2875.037316.7
    GQD-2–6.203–1.4194.784334.1
    GQD-3–6.266–1.3874.878353.3
    GQD-4–6.078–1.5844.493355.1
    GQD-5–6.038–1.6274.411354.8
    GQD-6–6.126–1.5544.572365.3
    B3N3-GQD-0–6.982–0.7786.204254.6
    B3N3-GQD-1–6.594–0.9875.607253.4
    B3N3-GQD-2–6.593–1.2275.366256.9
    B3N3-GQD-3–6.403–1.2075.196252.2
    B3N3-GQD-4–6.443–1.3985.044263.6
    B3N3-GQD-5–6.273–1.3704.903268.4
    B3N3-GQD-6–6.348–1.3075.041320.6
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li H, Yu X, Shen X, Tang G, Han K 2019 J. Phys. Chem. C 123 20020Google Scholar

    [3]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [4]

    白家豪, 郭建刚 2020 物理学报 69 056201Google Scholar

    Bai J H, Guo J G 2020 Acta Phys. Sin. 69 056201Google Scholar

    [5]

    Guo Z, Zhang D, Gong X G 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [6]

    蔡乐, 王华平, 于贵 2016 物理学进展 36 21Google Scholar

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21Google Scholar

    [7]

    徐小志, 余佳晨, 张智宏, 刘开辉 2017 科学通报 62 2220Google Scholar

    Xu X Z, Yu J C, Zhang Z H, Liu K H 2017 Chinese Sci. Bull. 62 2220Google Scholar

    [8]

    张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar

    [9]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106Google Scholar

    [10]

    Ouyang F P, Chen L, Jin X, Zhang H 2011 Chin. Phys. Lett. 28 047304Google Scholar

    [11]

    Otero N, El-kelany K E, Pouchan C, Rérata M, Karamanis P 2016 Phys.Chem.Chem.Phys. 18 25315Google Scholar

    [12]

    Zhang M, Li G, Li L 2014 J. Mater. Chem. C 2 1482Google Scholar

    [13]

    Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M J, Schaub R, Bettinger H F 2015 Angew. Chem. Int. Ed. 54 8284Google Scholar

    [14]

    You J W, Bongu S R, Bao Q, Panoiu N C 2018 Nanophotonics 8 63Google Scholar

    [15]

    Bonifazi D, Fasano F, Marinelli D 2015 Chem. Comm. 51 15222Google Scholar

    [16]

    Dosso J, Marinelli D, Demitri N, Bonifazi D 2019 ACS Omega 4 9343Google Scholar

    [17]

    Kan M, Li Y, Sun Q 2016 WIREs Comput. Mol. Sci. 6 65Google Scholar

    [18]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechn. 4 839Google Scholar

    [19]

    Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W, Song J H, Seo M K, Par H G 2017 Nano Lett. 17 1892Google Scholar

    [20]

    Sun Z P, Hasan T, Torrisi F 2010 ACS Nano 4 803Google Scholar

    [21]

    Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P, Wu Y X 2017 Carbon 122 756Google Scholar

    [22]

    Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M 2013 Phys. Rev. X 3 021014Google Scholar

    [23]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [24]

    Karamanis P, Otero N, Pouchan C 2014 J. Am. Chem. Soc. 136 7464Google Scholar

    [25]

    Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T, Wu S W 2018 Nat. Photonics 12 430Google Scholar

    [26]

    Liaros N, Bourlinos A B, Zboril R, Couris S 2013 Opt. Exp. 21 21027Google Scholar

    [27]

    Bendikov M, Duong H M, Starkey K, Houk K N, Carter E A, Wudl F 2004 J. Am. Chem. Soc. 126 7416Google Scholar

    [28]

    Hachmann J, Dorando J J, Aviles M, Chan K L 2007 J. Chem. Phys. 127 134309Google Scholar

    [29]

    Zhang B X, Gao H, Li X L 2014 New J. Chem. 38 4615Google Scholar

    [30]

    Zheng X Q, Feng M, Li Z G, Song Y L, Zhang H B 2014 J. Mater. Chem. C 2 4121Google Scholar

    [31]

    Hu Y Y, Li W Q, Li Y, Feng J K, Tian W Q 2016 Can. J. Chem. 94 620Google Scholar

    [32]

    Otero N, Karamanis P, El-Kelany K E, Rérat M, Maschio L, Civalleri B, Kirtman B 2017 J. Phys. Chem. C 121 709Google Scholar

    [33]

    Otero N, Pouchan C, Karamanis P 2017 J. Mater. Chem. C 5 8273Google Scholar

    [34]

    Karamanis P, Otero N, Pouchan C 2015 J. Phys. Chem. C 119 11872Google Scholar

    [35]

    Li H, Zhang Y, Bi Z, Xu R, Li M, Shen X, Tang G, Han K 2017 Mol. Phys. 115 3164Google Scholar

    [36]

    李海鹏, 韩奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白磊 2006 物理学报 55 1827Google Scholar

    Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827Google Scholar

    [37]

    梁飞, 林哲帅, 吴以成 2018 物理学报 67 114203Google Scholar

    Liang F, Lin Z S, Wu Y C 2018 Acta Phys. Sin. 67 114203Google Scholar

    [38]

    马勇, 邹斌, 李宗良, 王传奎, 罗毅 2006 物理学报 55 1974Google Scholar

    Ma Y, Zou B, Li Z L, Wang C K, Luo Y 2006 Acta Phys. Sin. 55 1974Google Scholar

    [39]

    Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)

    [40]

    王磊, 胡慧芳, 韦建卫, 曾晖, 于滢潆, 王志勇, 张丽娟 2008 物理学报 57 2987Google Scholar

    Wang L, Hu H F, Wei J W, Zeng H, Yu Y Y, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987Google Scholar

    [41]

    Zhang Y P, Ma J M, Yang Y S, Ru J X, Liu X Y, Ma Y, Guo H C 2019 Spectrochim. Acta A 217 60Google Scholar

  • [1] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [2] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [3] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [4] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [5] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [7] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [8] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [9] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [10] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [11] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响. 物理学报, 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [12] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [13] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [14] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [15] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究. 物理学报, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [16] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [17] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [18] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [19] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  6917
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-06
  • 修回日期:  2020-10-26
  • 上网日期:  2020-11-20
  • 刊出日期:  2021-03-05

/

返回文章
返回