-
石墨烯作为一种新型非线性光学材料, 在光子学领域具有重要的应用前景, 引起研究人员的极大兴趣. 本文运用量子化学计算方法研究了边界引入碳碳双键(C=C)和掺杂环硼氮烷(B3N3)环对石墨烯量子点非线性光学性质和紫外-可见吸收光谱的影响. 研究发现, 扶手椅边界上引入C=C双键后, 六角形石墨烯量子点分子结构对称性降低, 电荷分布对称性发生破缺, 导致分子二阶非线性光学活性增强. 石墨烯量子点在从扶手椅型边界向锯齿型边界过渡的过程中, 随着边界C=C双键数目的增加, 六角形石墨烯量子点和B3N3掺杂六角形石墨烯量子点的极化率和第二超极化率分别呈线性增加. 此外, 边界对石墨烯量子点的吸收光谱也有重要影响. 无论是石墨烯量子点还是B3N3掺杂石墨烯量子点, 扶手椅型边界上引入C=C双键导致最高占据分子轨道能级升高, 最低未占分子轨道能级的降低, 前线分子轨道能级差减小, 因而最大吸收波长发生了红移. 中心掺杂B3N3环后会增大石墨烯量子点的分子前线轨道能级差, 导致B3N3掺杂后的石墨烯量子点紫外-可见吸收光谱发生蓝移. 本文研究为边界修饰调控石墨烯量子点非线性光学响应提供了一定的理论指导.Graphene is a two-dimensional material with single-layer honeycomb lattice structure formed by sp2 hybrid connection of carbon atoms. Graphene has excellent optical, electrical, thermal and mechanical properties, and it is considered to be an ideal material for future flexible optoelectronic devices. In recent years, the nonlinear optical properties and regulation of graphene nanostructures have attracted experimental and theoretical interest. Graphene has good delocalization of π-electrons and its unique plane structure, showing good nonlinear optical properties. Graphene quantum dots can be regarded as small graphene nanoflakes. Their unique electronic structure is closely related to the non-bond orbitals on the boundary/edge. Therefore, it is very important to study the boundary/edge effect on the electronic and optical properties of nanographene. In this paper, effects of the number of edge C=C double bonds and Borazine (B3N3) doping on the nonlinear optical properties and UV-Vis absorption spectrum of graphene quantum dots are studied by the quantum chemical calculation methods, respectively. It is found that the symmetry of hexagonal graphene quantum dots decreases and the symmetry of charge distribution is broken when C=C double bond is introduced into the armchair edge, which leads the second-order nonlinear optical activity to be enhanced. During the transition from armchair to zigzag edge, the polarizability and the second hyperpolarizability of hexagonal graphene quantum dots and B3N3-doped graphene quantum dots increase linearly with the number of introduced C=C double bonds incrrasing. In addition, the edge also has an important influence on the absorption spectrum of graphene quantum dots. For graphene quantum dots and B3N3-doped graphene quantum dots, the introduction of C=C double bond at the armchair edge increases the highest occupied molecular orbital energy level and also reduces the lowest unoccupied molecular orbital energy level, which reduces the energy gap between the frontier molecular orbitals, and thus resulting in the red-shift of the maximum absorption wavelength. The doping of B3N3 ring will increase the energy gap between molecular frontier orbitals of graphene quantum dots, leading the UV-Vis absorption spectrum of graphene quantum dots to be blue-shifted. This study provides theoretical guidance for controlling the nonlinear optical response of graphene quantum dots by edge modification.
-
Keywords:
- graphene /
- nonlinear optics /
- absorption spectrum /
- edge effect
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Li H, Yu X, Shen X, Tang G, Han K 2019 J. Phys. Chem. C 123 20020Google Scholar
[3] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar
Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar
[4] 白家豪, 郭建刚 2020 物理学报 69 056201Google Scholar
Bai J H, Guo J G 2020 Acta Phys. Sin. 69 056201Google Scholar
[5] Guo Z, Zhang D, Gong X G 2009 Appl. Phys. Lett. 95 163103Google Scholar
[6] 蔡乐, 王华平, 于贵 2016 物理学进展 36 21Google Scholar
Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21Google Scholar
[7] 徐小志, 余佳晨, 张智宏, 刘开辉 2017 科学通报 62 2220Google Scholar
Xu X Z, Yu J C, Zhang Z H, Liu K H 2017 Chinese Sci. Bull. 62 2220Google Scholar
[8] 张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar
Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar
[9] Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106Google Scholar
[10] Ouyang F P, Chen L, Jin X, Zhang H 2011 Chin. Phys. Lett. 28 047304Google Scholar
[11] Otero N, El-kelany K E, Pouchan C, Rérata M, Karamanis P 2016 Phys.Chem.Chem.Phys. 18 25315Google Scholar
[12] Zhang M, Li G, Li L 2014 J. Mater. Chem. C 2 1482Google Scholar
[13] Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M J, Schaub R, Bettinger H F 2015 Angew. Chem. Int. Ed. 54 8284Google Scholar
[14] You J W, Bongu S R, Bao Q, Panoiu N C 2018 Nanophotonics 8 63Google Scholar
[15] Bonifazi D, Fasano F, Marinelli D 2015 Chem. Comm. 51 15222Google Scholar
[16] Dosso J, Marinelli D, Demitri N, Bonifazi D 2019 ACS Omega 4 9343Google Scholar
[17] Kan M, Li Y, Sun Q 2016 WIREs Comput. Mol. Sci. 6 65Google Scholar
[18] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechn. 4 839Google Scholar
[19] Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W, Song J H, Seo M K, Par H G 2017 Nano Lett. 17 1892Google Scholar
[20] Sun Z P, Hasan T, Torrisi F 2010 ACS Nano 4 803Google Scholar
[21] Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P, Wu Y X 2017 Carbon 122 756Google Scholar
[22] Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M 2013 Phys. Rev. X 3 021014Google Scholar
[23] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar
[24] Karamanis P, Otero N, Pouchan C 2014 J. Am. Chem. Soc. 136 7464Google Scholar
[25] Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T, Wu S W 2018 Nat. Photonics 12 430Google Scholar
[26] Liaros N, Bourlinos A B, Zboril R, Couris S 2013 Opt. Exp. 21 21027Google Scholar
[27] Bendikov M, Duong H M, Starkey K, Houk K N, Carter E A, Wudl F 2004 J. Am. Chem. Soc. 126 7416Google Scholar
[28] Hachmann J, Dorando J J, Aviles M, Chan K L 2007 J. Chem. Phys. 127 134309Google Scholar
[29] Zhang B X, Gao H, Li X L 2014 New J. Chem. 38 4615Google Scholar
[30] Zheng X Q, Feng M, Li Z G, Song Y L, Zhang H B 2014 J. Mater. Chem. C 2 4121Google Scholar
[31] Hu Y Y, Li W Q, Li Y, Feng J K, Tian W Q 2016 Can. J. Chem. 94 620Google Scholar
[32] Otero N, Karamanis P, El-Kelany K E, Rérat M, Maschio L, Civalleri B, Kirtman B 2017 J. Phys. Chem. C 121 709Google Scholar
[33] Otero N, Pouchan C, Karamanis P 2017 J. Mater. Chem. C 5 8273Google Scholar
[34] Karamanis P, Otero N, Pouchan C 2015 J. Phys. Chem. C 119 11872Google Scholar
[35] Li H, Zhang Y, Bi Z, Xu R, Li M, Shen X, Tang G, Han K 2017 Mol. Phys. 115 3164Google Scholar
[36] 李海鹏, 韩奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白磊 2006 物理学报 55 1827Google Scholar
Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827Google Scholar
[37] 梁飞, 林哲帅, 吴以成 2018 物理学报 67 114203Google Scholar
Liang F, Lin Z S, Wu Y C 2018 Acta Phys. Sin. 67 114203Google Scholar
[38] 马勇, 邹斌, 李宗良, 王传奎, 罗毅 2006 物理学报 55 1974Google Scholar
Ma Y, Zou B, Li Z L, Wang C K, Luo Y 2006 Acta Phys. Sin. 55 1974Google Scholar
[39] Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)
[40] 王磊, 胡慧芳, 韦建卫, 曾晖, 于滢潆, 王志勇, 张丽娟 2008 物理学报 57 2987Google Scholar
Wang L, Hu H F, Wei J W, Zeng H, Yu Y Y, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987Google Scholar
[41] Zhang Y P, Ma J M, Yang Y S, Ru J X, Liu X Y, Ma Y, Guo H C 2019 Spectrochim. Acta A 217 60Google Scholar
-
表 1 GQD-n和B3N3-GQD-n的极化率α、第一超极化率β和第二超极化率γ计算值
Table 1. Calculated polarizability α, first hyperpolarizability β, second hyperpolarizability γ of GQD-n and B3N3-GQD-n.
分子 α/(10–39 C2·m2·J–1) β/(10–51 C3·m3·J–2) γ/(10–59 C4·m4·J–3) GQD-0 8.856 0 1.807 GQD-1 9.455 4.167 2.069 GQD-2 10.070 4.630 2.312 GQD-3 10.666 7.037 2.521 GQD-4 11.298 8.505 2.875 GQD-5 11.928 2.332 3.185 GQD-6 12.549 0 3.380 B3N3-GQD-0 8.206 0 1.381 B3N3-GQD-1 8.803 3.871 1.735 B3N3-GQD-2 9.413 0.330 2.011 B3N3-GQD-3 10.019 10.875 2.310 B3N3-GQD-4 10.629 6.387 2.689 B3N3-GQD-5 11.259 9.293 3.157 B3N3-GQD-6 11.883 0 3.446 表 2 GQD-n和B3N3-GQD-n的HOMO能级、LUMO能级、HOMO-LUMO能级差(HLG)和最大吸收波长λmax计算值
Table 2. Calculated HOMO energy level, LUMO energy level, HOMO-LUMO energy gap (HLG) and maximum absorption wavelength λmax of GQD-n and B3N3-GQD-n.
分子 HOMO/eV LUMO/eV HLG/eV λmax/nm GQD-0 –6.606 –0.995 5.611 308.6 GQD-1 –6.324 –1.287 5.037 316.7 GQD-2 –6.203 –1.419 4.784 334.1 GQD-3 –6.266 –1.387 4.878 353.3 GQD-4 –6.078 –1.584 4.493 355.1 GQD-5 –6.038 –1.627 4.411 354.8 GQD-6 –6.126 –1.554 4.572 365.3 B3N3-GQD-0 –6.982 –0.778 6.204 254.6 B3N3-GQD-1 –6.594 –0.987 5.607 253.4 B3N3-GQD-2 –6.593 –1.227 5.366 256.9 B3N3-GQD-3 –6.403 –1.207 5.196 252.2 B3N3-GQD-4 –6.443 –1.398 5.044 263.6 B3N3-GQD-5 –6.273 –1.370 4.903 268.4 B3N3-GQD-6 –6.348 –1.307 5.041 320.6 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Li H, Yu X, Shen X, Tang G, Han K 2019 J. Phys. Chem. C 123 20020Google Scholar
[3] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar
Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar
[4] 白家豪, 郭建刚 2020 物理学报 69 056201Google Scholar
Bai J H, Guo J G 2020 Acta Phys. Sin. 69 056201Google Scholar
[5] Guo Z, Zhang D, Gong X G 2009 Appl. Phys. Lett. 95 163103Google Scholar
[6] 蔡乐, 王华平, 于贵 2016 物理学进展 36 21Google Scholar
Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21Google Scholar
[7] 徐小志, 余佳晨, 张智宏, 刘开辉 2017 科学通报 62 2220Google Scholar
Xu X Z, Yu J C, Zhang Z H, Liu K H 2017 Chinese Sci. Bull. 62 2220Google Scholar
[8] 张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar
Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar
[9] Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106Google Scholar
[10] Ouyang F P, Chen L, Jin X, Zhang H 2011 Chin. Phys. Lett. 28 047304Google Scholar
[11] Otero N, El-kelany K E, Pouchan C, Rérata M, Karamanis P 2016 Phys.Chem.Chem.Phys. 18 25315Google Scholar
[12] Zhang M, Li G, Li L 2014 J. Mater. Chem. C 2 1482Google Scholar
[13] Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M J, Schaub R, Bettinger H F 2015 Angew. Chem. Int. Ed. 54 8284Google Scholar
[14] You J W, Bongu S R, Bao Q, Panoiu N C 2018 Nanophotonics 8 63Google Scholar
[15] Bonifazi D, Fasano F, Marinelli D 2015 Chem. Comm. 51 15222Google Scholar
[16] Dosso J, Marinelli D, Demitri N, Bonifazi D 2019 ACS Omega 4 9343Google Scholar
[17] Kan M, Li Y, Sun Q 2016 WIREs Comput. Mol. Sci. 6 65Google Scholar
[18] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechn. 4 839Google Scholar
[19] Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W, Song J H, Seo M K, Par H G 2017 Nano Lett. 17 1892Google Scholar
[20] Sun Z P, Hasan T, Torrisi F 2010 ACS Nano 4 803Google Scholar
[21] Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P, Wu Y X 2017 Carbon 122 756Google Scholar
[22] Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M 2013 Phys. Rev. X 3 021014Google Scholar
[23] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar
[24] Karamanis P, Otero N, Pouchan C 2014 J. Am. Chem. Soc. 136 7464Google Scholar
[25] Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T, Wu S W 2018 Nat. Photonics 12 430Google Scholar
[26] Liaros N, Bourlinos A B, Zboril R, Couris S 2013 Opt. Exp. 21 21027Google Scholar
[27] Bendikov M, Duong H M, Starkey K, Houk K N, Carter E A, Wudl F 2004 J. Am. Chem. Soc. 126 7416Google Scholar
[28] Hachmann J, Dorando J J, Aviles M, Chan K L 2007 J. Chem. Phys. 127 134309Google Scholar
[29] Zhang B X, Gao H, Li X L 2014 New J. Chem. 38 4615Google Scholar
[30] Zheng X Q, Feng M, Li Z G, Song Y L, Zhang H B 2014 J. Mater. Chem. C 2 4121Google Scholar
[31] Hu Y Y, Li W Q, Li Y, Feng J K, Tian W Q 2016 Can. J. Chem. 94 620Google Scholar
[32] Otero N, Karamanis P, El-Kelany K E, Rérat M, Maschio L, Civalleri B, Kirtman B 2017 J. Phys. Chem. C 121 709Google Scholar
[33] Otero N, Pouchan C, Karamanis P 2017 J. Mater. Chem. C 5 8273Google Scholar
[34] Karamanis P, Otero N, Pouchan C 2015 J. Phys. Chem. C 119 11872Google Scholar
[35] Li H, Zhang Y, Bi Z, Xu R, Li M, Shen X, Tang G, Han K 2017 Mol. Phys. 115 3164Google Scholar
[36] 李海鹏, 韩奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白磊 2006 物理学报 55 1827Google Scholar
Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827Google Scholar
[37] 梁飞, 林哲帅, 吴以成 2018 物理学报 67 114203Google Scholar
Liang F, Lin Z S, Wu Y C 2018 Acta Phys. Sin. 67 114203Google Scholar
[38] 马勇, 邹斌, 李宗良, 王传奎, 罗毅 2006 物理学报 55 1974Google Scholar
Ma Y, Zou B, Li Z L, Wang C K, Luo Y 2006 Acta Phys. Sin. 55 1974Google Scholar
[39] Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)
[40] 王磊, 胡慧芳, 韦建卫, 曾晖, 于滢潆, 王志勇, 张丽娟 2008 物理学报 57 2987Google Scholar
Wang L, Hu H F, Wei J W, Zeng H, Yu Y Y, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987Google Scholar
[41] Zhang Y P, Ma J M, Yang Y S, Ru J X, Liu X Y, Ma Y, Guo H C 2019 Spectrochim. Acta A 217 60Google Scholar
计量
- 文章访问数: 6917
- PDF下载量: 134
- 被引次数: 0