搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

II型射电暴分类及其与太阳高能粒子事件的关系

朱聪 丁留贯 周坤论 钱天麒

引用本文:
Citation:

II型射电暴分类及其与太阳高能粒子事件的关系

朱聪, 丁留贯, 周坤论, 钱天麒

Statistical analysis of characteristics of classified type II radio bursts and their associated solar energetic particle events

Zhu Cong, Ding Liu-Guan, Zhou Kun-Lun, Qian Tian-Qi
PDF
HTML
导出引用
  • 基于Wind, STEREO等卫星联合观测资料, 选取第24太阳活动周2010年1月至2018年3月共计273个II型射电暴事件, 按起始-结束频率对事件进行分类, 统计分析各类II型射电暴观测特性差异及其伴随的日冕物质抛射(coronal mass ejection, CME)与太阳高能粒子(solar energetic particle, SEP)事件之间的关联. 研究结果显示: 1)每一类II型射电暴事件中, SEP事件对应的CME角宽、速度、质量、动能及耀斑等级均普遍大于不产生SEP的事件, 表明SEP事件的产生需要快速大角宽且高能的CME; 2)相比从DH波段开始的II型射电暴, 从米波段开始的II型射电暴伴随大SEP事件的比例更高, 多频段II型射电暴事件比单频段事件更容易产生SEP事件, 其中M-DH-KM II型射电暴伴随SEP事件比例最高(73%), DH IIs only类最低(19%); 3)同一类II型射电暴中, 有SEP事件产生的II型射电暴比无SEP的事件具有更高的起始频率(更低的激波形成高度)、更低的结束频率(更高的结束高度)、以及更长的持续时间, 容易产生SEP事件(尤其是大型SEP事件)的日冕激波普遍在较低高度开始形成(如小于3Rs, Rs为太阳半径), 且能维持到很高的高度(如大于30Rs); 4) II型射电暴持续时间和结束频率呈很强的负相关(cc = –0.93), 产生SEP事件的比例随II型射电暴持续时间增加而明显增大, 随结束频率增加而明显降低, 且很大程度上取决于CME的速度等参数. 本文结果进一步表明, SEP事件产生与否与II型射电暴种类及特性明显相关, II型射电暴起始频率越高、结束频率越低, 如M-DH-KM II型射电暴, 其CME在很低高度驱动形成激波并传播至很高高度, 激波持续时间越长, 加速粒子时间越长, 产生SEP事件(尤其是大SEP事件)的概率也就越大.
    In this paper, we investigate 273 type II radio burst events detected by Wind, STEREO spacecraft from January 2010 to March 2018 during the 24th solar cycle. We classify all events as five groups or sub-types according to their starting and ending frequencies, and then analyze the observed characteristics of each group of type II radio bursts and the correlation between the occurrence of solar energetic particle (SEP) events and the associated coronal mass ejection (CME) or type II radio bursts. What we find is as follows. 1) In each group of type II radio burst events, the CME speed (v), width (WD), mass (m), and kinetic energy (Ek) associated with SEP events are generally greater than those with no SEP events, indicating that the generation of SEP events requires a fast and wide energetic CME eruption. 2) Compared with type II radio bursts starting from the DH band, type II radio bursts starting from the metric band have a higher proportion of large SEP events. Multi-band type II radio bursts are more likely to produce SEP events than single-band events, where M-DH-KM type II bursts have the highest proportion of SEP events (73%), and the DH IIs only have the lowest one (19%). 3) In each kind of type II radio bursts, the type IIs with SEP events usually have higher starting frequencies (lower shock forming heights), lower ending frequencies (higher ending heights) and longer durations than those with no SEP events; coronal shock waves that are easy to produce SEP events (especially large SEP events) generally begin to form at a lower height (such as < 3Rs, Rs: solar radius), and are sustained to a much larger height (such as > 30Rs). 4) There exists a strong negative correlation between the duration and the ending frequency of type II radio burst (cc = –0.93). The proportion of SEP events increases with the increase of the duration of type II radio burst, and decreases with the increase of the ending frequency, which largely depends on the CME speed and other properties. The results of this paper further show that the generation of SEP events is greatly related to the sub-types and characteristics of type II radio bursts. The higher the starting frequencies and the lower the ending frequencies of type II radio bursts, such as M-DH-KM type II bursts, of which the CME drives to forming shock waves at a very low height and propagates to a very large height, the longer the duration of the shock, the longer the time it takes to accelerate the particles, and the greater the probability of SEP events (especially large SEP events) is.
      通信作者: 丁留贯, dlg@nuist.edu.cn
    • 基金项目: 国家自然科学基金天文联合基金(批准号: U1731105)、江苏省基础研究计划面上项目(批准号: BK20171456)、中国科学院暗物质与空间天文重点实验室开放课题和南京信息工程大学滨江学院院级科研课题(2020年)资助的课题
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    • Funds: Project supported by the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1731105), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171456), the Specialized Research Fund for Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, and the Science Research Project of Binjiang College, Nanjing University of Information Science and Technology, China (2020)
    [1]

    Mclean D J, Labrum N R 1985 Astron. Nachr. 308 182Google Scholar

    [2]

    Benz A O 1986 Sol. Phys. 104 99Google Scholar

    [3]

    Payne-Scott R, Yabsley D E, Bolton J G 1947 Nature 160 256Google Scholar

    [4]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [5]

    Nelson G J, Melrose D B 1985 Type II Bursts (Cambridge and New York: Cambridge University Press) pp333−359

    [6]

    Cane H V 1983 Solar Physics (Pasadena: JPL Solar Wind Five) pp703−709

    [7]

    Gopalswamy N, Thompson B J 2000 J. Atmos. Solar-Terr. Phys. 62 1457Google Scholar

    [8]

    Cane H V, Stone R G, Fainberg J, Stewart R T, Steinberg J L, Hoang S 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [9]

    Prakash O, Umapathy S, Shanmugaraju A, Vršnak B 2009 Sol. Phys. 258 105Google Scholar

    [10]

    Prakash O, Umapathy S, Shanmugaraju A, Pappa Kalaivani P, Vršnak B 2010 Sol. Phys. 266 135Google Scholar

    [11]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 J. Geophys. Res. Atmos. 106 29219Google Scholar

    [12]

    Lara A, Gopalswamy N, Nunes S, Muñoz G, Yashiro S 2003 J. Geophys. Res. 30 8016Google Scholar

    [13]

    Reams D V 1995 Rev. Geophys. 33 585Google Scholar

    [14]

    Reams D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [15]

    Kahler S W 1996 Amer. Inst. Phys. 374 61Google Scholar

    [16]

    Kahler S W, Vourlidas A 2005 J. Geoghys. Res. 110 A12S01Google Scholar

    [17]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [18]

    Kahler S W, Vourlidas A 2014 Astrophys. J. 784 47Google Scholar

    [19]

    Desai M, Giacalone J 2016 Rev. Sol. Phys. 13 3Google Scholar

    [20]

    Lugaz N, Temmer M, Wang Y M, Farrugia C J 2017 Sol. Phys. 292 64Google Scholar

    [21]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 073Google Scholar

    [22]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [23]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 074Google Scholar

    [24]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 037Google Scholar

    [25]

    Gopalswamy N, Yashiro S, Lara A, Kaiser M L, Thompson B J, Gallagher P T, Howard R A 2003 Goephys. Res. Lett. 30 12Google Scholar

    [26]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [27]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 A12S07Google Scholar

    [28]

    Winter L M, Ledbetter K, 2015 Astrophys. J. 809 105Google Scholar

    [29]

    陈玉林, 季晶晶, 董丽花, 丁留贯, 李鹏 2015 大气科学学报 38 259Google Scholar

    Chen Y L, Ji J J, Dong L H, Ding L G, Li P 2015 Trans. Atmos. Sci. 38 259Google Scholar

    [30]

    Marqué C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [31]

    Kahler S W 2005 Astrophys. J. 628 1014Google Scholar

    [32]

    Su W, Cheng X, Ding M D, Sun J Q 2015 Astrophys. J. 804 88Google Scholar

    [33]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [34]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 001Google Scholar

    [35]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 Proceeding of the 28th International Cosmic Ray Conference Tsukuba, Japan, July 31−August 7, 2003 p3305

    [36]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res. A: Space Phys. 119 9419Google Scholar

    [37]

    Ding L G, Cao X X, Wang Z W, Le G M 2016 Res. Astron. Astrophys. 16 8Google Scholar

    [38]

    Bemporad A, Manceso S 2013 J. Adv. Res. 4 287Google Scholar

    [39]

    周坤论, 丁留贯, 王智伟, 封莉 2019 物理学报 68 139601Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 139601Google Scholar

    [40]

    Shanmugaraju A, Moon Y J, Dryer M, Umapathy S 2003 Sol. Phys. 217 301Google Scholar

    [41]

    周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉 2020 物理学报 69 169601Google Scholar

    Zhou K L, Ding L G, Qian T Q, Zhu C, Wang Z W, Feng L 2020 Acta Phys. Sin. 69 169601Google Scholar

  • 图 1  CME速度、角宽、质量和动能统计直方图

    Fig. 1.  Histogram of CME speed (v), angular width (WD), mass (m) and kinetic energy (Ek).

    图 2  耀斑等级统计直方图

    Fig. 2.  Histogram of solar flare classes.

    图 3  (a) II型射电暴起始频率分布; (b)−(f) 五类II型射电暴起始频率统计直方图(G1−G5)

    Fig. 3.  (a) Starting frequency distribution of type II radio bursts; (b)−(f) histogram of the starting frequencies of type II radio bursts for five groups (G1−G5).

    图 4  (a) II型射电暴结束频率分布; (b)−(f) 五类II型射电暴结束频率统计直方图(G1−G5)

    Fig. 4.  (a) Ending frequency distribution of type II radio bursts; (b)−(f) histogram of the ending frequencies of type II radio bursts for five groups (G1−G5).

    图 5  (a) II型射电暴持续时间分布; (b)−(f) 五类II型射电暴持续时间统计直方图(G1−G5)

    Fig. 5.  (a) Duration distribution of type II radio bursts; (b)−(f) histogram of the durations of type II radio burst for five groups (G1−G5).

    图 6  (a)−(e) II型射电暴持续时间与结束频率关系; (f), (g) 持续时间和结束频率各区间SEP事件百分比

    Fig. 6.  (a)−(e) Relationship between duration and ending frequency of type II radio bursts; (f), (g) percentage of SEP events in each interval of duration and ending frequency.

    图 7  II型射电暴起始高度的统计直方图

    Fig. 7.  Histogram of the starting heights of the different group of type II radio bursts.

    图 8  II型射电暴结束高度的统计直方图

    Fig. 8.  Histogram of the ending heights of the different group of type II radio bursts.

    图 9  II型射电暴维持高度统计直方图

    Fig. 9.  Histogram of the sustained heights of the type II radio bursts.

    表 1  II型射电暴伴随SEP事件的统计表

    Table 1.  SEP events associated with different group of type II radio bursts.

    事件类型G1G2G3G4G5All
    IIs事件数10732363860273
    无SEP事件数8026202216164
    SEP事件数276161644109
    SEP事件占比/%251944427340
    大SEP事件数13312134081
    大SEP事件占比/%12933346730
    SEP事件强度均值0.530.020.494.8938.7416.41
    SEP事件强度中值0.010.010.20.240.530.09
    大SEP事件强度均值1.090.040.656.0242.6222.28
    大SEP事件强度中值0.130.020.330.250.60.34
    下载: 导出CSV

    表 2  耀斑特征时间统计表

    Table 2.  Characteristic times of associated solar flares.

    类型T 1/minT 2/min
    均值中值均值中值
    G1: M IIs only14102619
    G2: DH IIs only38186633
    G3: M-DH IIs19163227
    G4: DH-KM IIs35237052
    G5: M-DH-KM IIs46227349
    下载: 导出CSV
  • [1]

    Mclean D J, Labrum N R 1985 Astron. Nachr. 308 182Google Scholar

    [2]

    Benz A O 1986 Sol. Phys. 104 99Google Scholar

    [3]

    Payne-Scott R, Yabsley D E, Bolton J G 1947 Nature 160 256Google Scholar

    [4]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [5]

    Nelson G J, Melrose D B 1985 Type II Bursts (Cambridge and New York: Cambridge University Press) pp333−359

    [6]

    Cane H V 1983 Solar Physics (Pasadena: JPL Solar Wind Five) pp703−709

    [7]

    Gopalswamy N, Thompson B J 2000 J. Atmos. Solar-Terr. Phys. 62 1457Google Scholar

    [8]

    Cane H V, Stone R G, Fainberg J, Stewart R T, Steinberg J L, Hoang S 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [9]

    Prakash O, Umapathy S, Shanmugaraju A, Vršnak B 2009 Sol. Phys. 258 105Google Scholar

    [10]

    Prakash O, Umapathy S, Shanmugaraju A, Pappa Kalaivani P, Vršnak B 2010 Sol. Phys. 266 135Google Scholar

    [11]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 J. Geophys. Res. Atmos. 106 29219Google Scholar

    [12]

    Lara A, Gopalswamy N, Nunes S, Muñoz G, Yashiro S 2003 J. Geophys. Res. 30 8016Google Scholar

    [13]

    Reams D V 1995 Rev. Geophys. 33 585Google Scholar

    [14]

    Reams D V 1999 Space. Sci. Rev. 90 413Google Scholar

    [15]

    Kahler S W 1996 Amer. Inst. Phys. 374 61Google Scholar

    [16]

    Kahler S W, Vourlidas A 2005 J. Geoghys. Res. 110 A12S01Google Scholar

    [17]

    Kahler S W 2001 J. Geophys. Res. 106 20947Google Scholar

    [18]

    Kahler S W, Vourlidas A 2014 Astrophys. J. 784 47Google Scholar

    [19]

    Desai M, Giacalone J 2016 Rev. Sol. Phys. 13 3Google Scholar

    [20]

    Lugaz N, Temmer M, Wang Y M, Farrugia C J 2017 Sol. Phys. 292 64Google Scholar

    [21]

    Le G M, Li C, Zhang X F 2017 Res. Astron. Astrophys. 17 073Google Scholar

    [22]

    Le G M, Zhang X F 2017 Res. Astron. Astrophys. 17 123Google Scholar

    [23]

    Zhao M X, Le G M, Chi Y T 2018 Res. Astron. Astrophys. 18 074Google Scholar

    [24]

    Zhao M X, Le G M 2020 Res. Astron. Astrophys. 20 037Google Scholar

    [25]

    Gopalswamy N, Yashiro S, Lara A, Kaiser M L, Thompson B J, Gallagher P T, Howard R A 2003 Goephys. Res. Lett. 30 12Google Scholar

    [26]

    Cliver E W, Kahler S W 2004 Astrophys. J. 605 902Google Scholar

    [27]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 A12S07Google Scholar

    [28]

    Winter L M, Ledbetter K, 2015 Astrophys. J. 809 105Google Scholar

    [29]

    陈玉林, 季晶晶, 董丽花, 丁留贯, 李鹏 2015 大气科学学报 38 259Google Scholar

    Chen Y L, Ji J J, Dong L H, Ding L G, Li P 2015 Trans. Atmos. Sci. 38 259Google Scholar

    [30]

    Marqué C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [31]

    Kahler S W 2005 Astrophys. J. 628 1014Google Scholar

    [32]

    Su W, Cheng X, Ding M D, Sun J Q 2015 Astrophys. J. 804 88Google Scholar

    [33]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Le G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [34]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 001Google Scholar

    [35]

    Tylka A J, Cohen C M S, Dietrich W F, Krucker S, McGuire R E, Mewaldt R A, Ng C K, Reames D V, Share G H 2003 Proceeding of the 28th International Cosmic Ray Conference Tsukuba, Japan, July 31−August 7, 2003 p3305

    [36]

    Kim R S, Cho K S, Lee J, Bong S C, Park Y D 2014 J. Geophys. Res. A: Space Phys. 119 9419Google Scholar

    [37]

    Ding L G, Cao X X, Wang Z W, Le G M 2016 Res. Astron. Astrophys. 16 8Google Scholar

    [38]

    Bemporad A, Manceso S 2013 J. Adv. Res. 4 287Google Scholar

    [39]

    周坤论, 丁留贯, 王智伟, 封莉 2019 物理学报 68 139601Google Scholar

    Zhou K L, Ding L G, Wang Z W, Feng L 2019 Acta Phys. Sin. 68 139601Google Scholar

    [40]

    Shanmugaraju A, Moon Y J, Dryer M, Umapathy S 2003 Sol. Phys. 217 301Google Scholar

    [41]

    周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉 2020 物理学报 69 169601Google Scholar

    Zhou K L, Ding L G, Qian T Q, Zhu C, Wang Z W, Feng L 2020 Acta Phys. Sin. 69 169601Google Scholar

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 严豪, 丁留贯, 封莉, 顾斌. 太阳高能粒子强度与日冕物质抛射及其II型射电暴的关系. 物理学报, 2024, 73(7): 079601. doi: 10.7498/aps.73.20231855
    [3] 贾雷明, 王智环, 王澍霏, 钟巍, 田宙. 二维平面激波折射的理论计算方法. 物理学报, 2023, 72(6): 064701. doi: 10.7498/aps.72.20222042
    [4] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [5] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [6] 周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉. II型射电暴射电增强与太阳高能粒子事件关系的统计. 物理学报, 2020, 69(16): 169601. doi: 10.7498/aps.69.20200041
    [7] 周坤论, 丁留贯, 王智伟, 封莉. 基于射电观测的日冕物质抛射驱动激波的统计特征研究. 物理学报, 2019, 68(13): 139601. doi: 10.7498/aps.68.20190223
    [8] 陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁. 流经矩形喷嘴的超音速射流啸叫模式切换的实验研究. 物理学报, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [9] 孙晓燕, 朱军芳. 部分道路关闭引起的交通激波特性研究. 物理学报, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [10] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [11] 陈植, 易仕和, 朱杨柱, 何霖, 全鹏程. 强梯度复杂流场中的粒子动力学响应试验研究. 物理学报, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [12] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [13] 沙莎, 陈志华, 张焕好, 姜孝海. Schardin问题的数值研究. 物理学报, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [14] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究. 物理学报, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [15] 王 晶, 冯学尚. 日冕物质抛射引起地磁扰动的分类预报. 物理学报, 2007, 56(4): 2466-2474. doi: 10.7498/aps.56.2466
    [16] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法. 物理学报, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [17] 吴钦宽. 一类激波问题的间接匹配解. 物理学报, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [18] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [19] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  5818
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-12-17
  • 上网日期:  2021-04-21
  • 刊出日期:  2021-05-05

/

返回文章
返回