搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒传输表面等离激元的近场成像表征与激发效率的调控

赵翔宇 秦楡禄 季博宇 郎鹏 宋晓伟 林景全

引用本文:
Citation:

飞秒传输表面等离激元的近场成像表征与激发效率的调控

赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全

Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency

Zhao Xiang-Yu, Qin Yu-Lu, Ji Bo-Yu, Lang Peng, Song Xiao-Wei, Lin Jing-Quan
PDF
HTML
导出引用
  • 飞秒传输表面等离激元(femtosecond propagating surface plasmon, fs-PSP)的近场成像表征和激发效率的主动控制是实现其应用的先决条件. 本文利用光发射电子显微镜对银纳米薄膜上刻蚀的凹槽耦合结构处激发的fs-PSP进行近场成像. 并系统测量了入射激光波长在720—900 nm范围内fs-PSP近电场与入射激光场干涉信号的周期和fs-PSP的波长. 在此基础上, 进一步利用飞秒双光束泵浦-探测实验证实了调节入射激光的偏振方向可实现对fs-PSP激发效率的调控. 由实验结果可知, 当入射激光偏振接近0° (P偏振)时, fs-PSP的激发效率最高, 当入射光偏振接近90° (S偏振)时, fs-PSP的激发效率最低. 相较于有限时域差分方法模拟, 在飞秒双光束泵浦-探测实验中归一化光发射电子产额随入射激光偏振方向变化的曲线出现平台区, 我们把这一现象归因于探测激光的背景噪声淹没了fs-PSP激发效率的变化. 该研究为实现fs-PSP激发效率的工程性调控和优化等离激元器件的性能奠定了基础.
    Near-field imaging and active control of excitation efficiency of femtosecond propagating surface plasmon (fs-PSP) are the prerequisites for its application. Here, we perform near-field imaging of fs-PSP excited at the trench etched on silver nano-film by using photoemission electron microscopy (PEEM). As an excellent near-field microscopy technique of in situ imaging with a high spatial resolution (< 20 nm), it needs neither molecular reporters nor scanning probes as required in nonlinear fluorescence microscopy in nonlinear fluorescence microscopy or scanning near-field optical microscopy, both of which may potentially bias PSP derived from such measurements. The period of the interference patterns induced by the incident femtosecond laser and the laser-induced fs-PSP and the wavelength of fs-PSP in a range of 720–900 nm of the incident laser wavelength are systematically measured. The fringe period of the interference pattern between fs-PSP and the incident laser is a range of 5.9–7.7 µm, and the wavelength of fs-PSP is in a range of 700–879 nm. The experimental results are consistent with the theoretical simulation results. Furthermore, we demonstrate that the excitation efficiency of fs-PSP can be actively controlled by adjusting the polarization direction of the incident laser in the femtosecond pump-probe experiments. Specifically, it is found that when the incident laser is polarized to 0° (p-polarization light), the excitation efficiency of PSP reaches a maximum value, and when the incident light is polarized to 90° (s-polarization light), the excitation efficiency of fs-PSP is the lowest. Unlike the simulation result by the finite difference time domain (FDTD) method, a plateau area of the intensity of the photoemission signal with the polarization direction of the incident laser appears in the femtosecond pump-probe experiment. This phenomenon is attributed to the background noise of the detection laser that masks the change of the fs-PSP excitation efficiency. In a word, this research realizes the experimental measurement of the basic parameters of fs-PSP and the manipulation of fs-PSP excitation efficiency by adjusting the polarization angle of the incident laser. This research lays a foundation for realizing the engineering manipulation of fs-PSP excitation efficiency and optimizing the performance of plasmonic devices.
      通信作者: 秦楡禄, 2296161375@qq.com ; 宋晓伟, songxiaowei@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775021, 91850109, 11474040, 62005022, 12004052)、吉林省教育厅基金(批准号: JJKH20190555KJ)、 吉林省科技厅基金(批准号: 20200201268JC, 20200401052GX)和中国博士后科学基金(批准号: 2019M661183)资助的课题
      Corresponding author: Qin Yu-Lu, 2296161375@qq.com ; Song Xiao-Wei, songxiaowei@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775021, 91850109, 11474040, 62005022, 12004052), the Education Department of Jilin Province Foundation (Grant No. JJKH20190555KJ), the Department of science and technology of Jilin Province Foundation (Grant Nos. 20200201268JC, 20200401052GX), and the China Postdoctoral Science Foundation (Grant No. 2019M661183)
    [1]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [2]

    Ozbay E 2006 Science 311 189Google Scholar

    [3]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Xu H X, Wang W H 2018 Chem. Rev. 118 2882Google Scholar

    [4]

    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P 2015 Nano Lett. 15 3472Google Scholar

    [5]

    Pyayt A L, Wiley B, Xia Y, Chen A, Dalton L 2008 Nat. Nanotechnol. 3 660Google Scholar

    [6]

    Li X, Huang L, Tan Q, Bai B, Jin G 2011 Opt. Express 19 6541Google Scholar

    [7]

    Sumimura A, Ota M, Nakayama K, Ito M, Ishii Y, Fukuda M 2016 IEEE Photonics Technol. Lett. 28 2419Google Scholar

    [8]

    Chang K W, Huang C C 2016 Sci. Rep. 6 19609Google Scholar

    [9]

    Hu T, Qiu H, Zhang Z, Guo X, Liu C, Rouifed M S, Littlejohns C G, Reed G T, Wang H 2016 IEEE Photonics J. 8 4802209Google Scholar

    [10]

    Lemke C, Schneider C, Leißner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M 2013 Nano Lett. 13 1053Google Scholar

    [11]

    Bettina F, Philip K, Daniel P, Grisha S, Meir O, Fu L W, Thomas W, Michael H H, Timothy J D, Frank-J M Z H, Harald G 2017 Sci. Adv. 3 e1700721Google Scholar

    [12]

    Zu S, Han T Y, Jiang M L, Liu Z X, Jiang Q, Lin F, Zhu X, Fang Z Y 2019 Nano Lett. 19 775Google Scholar

    [13]

    Zu S, Han T Y, Jiang M L, Lin F, Zhu X, Fang Z Y 2018 ACS Nano 12 3908Google Scholar

    [14]

    Han T Y, Zu S, Li Z W, Jiang M L, Zhu X, Fang Z Y 2018 Nano Lett. 18 567Google Scholar

    [15]

    Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B, Zhu X, Fang Z Y 2018 Opto-Electron. 1 180007Google Scholar

    [16]

    EL-Khoury P Z, Abellan P, Gong Y, Hage F S, Cottom J, Joly A G, Brydson R, Ramasse Q M, Hess W P 2016 The Anakyst 141 3562Google Scholar

    [17]

    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Pelton M, Scherer N F 2012 ACS Nano 6 472Google Scholar

    [18]

    Liu X J, Wang Y, Potma E O 2012 Appl. Phys. Lett. 101 081116Google Scholar

    [19]

    Zhang W H, Fang Z Y, Zhu X 2017 Chem. Rev. 117 5095Google Scholar

    [20]

    Yin L L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano Lett. 5 1399Google Scholar

    [21]

    Fang Z Y, Zhu X 2013 Adv. Mater. 25 3840Google Scholar

    [22]

    Kubo A, Pontius N, Petek H 2007 Nano Lett. 7 470Google Scholar

    [23]

    Sun Q, Zu S, Misawa H 2020 J. Chem. Phys. 153 120902Google Scholar

    [24]

    Dąbrowski M, Dai Y N, Petek H 2017 J. Phys. Chem. Lett. 8 4446Google Scholar

    [25]

    Ditlbacher H, Krenn J R, Hohenau A, Leitner A, Aussenegg F R 2003 Appl. Phys. Lett. 83 3665Google Scholar

    [26]

    Radko I P, Bozhevolnyi S I, Brucoli G, Martı′n-Moreno L, Garcıá-Vidal F G, Boltaseva A 2008 Phys. Rev. B 78 115115Google Scholar

    [27]

    Baudrion A L, León-Pérez F, Mahboub O, Hohenau A, Ditlbacher H, Garcıá-Vidal F J, Dintinger J, Ebbesen T W, Martı′n-Moreno L, R.Krenn J 2008 Opt. Express 16 3420Google Scholar

    [28]

    Lu J, Petre C, Yablonovitch E, Conway J 2007 J. Opt. Soc. Am. B 24 2268Google Scholar

    [29]

    Klick A, Cruz S L, Lemke C, Großmann M, Beyer H, Fiutowski J, Rubahn H G, Mendez E R, Bauer M 2016 Appl. Phys. B 122 79Google Scholar

    [30]

    Zhang L X, Kubo A, Wang L, Petek H, Seideman T 2011 Phys. Rev. B 84 245442Google Scholar

    [31]

    Buckanie N M, Kirschbaum P, Sindermann S, Meyer zu J, Heringdorf F 2013 Ultramicroscopy 130 49Google Scholar

    [32]

    Gong Y, Joly A G, EI-Khoury P Z, Hess W P 2017 J. Phys. Chem. Lett. 8 49Google Scholar

    [33]

    Qin Y L, Song X W, Ji B Y, Xu Y, Lin J Q 2019 Opt. Lett. 44 2935Google Scholar

  • 图 1  (a)激发fs-PSP的实验示意图; (b)−(e)分别表示入射激光波长为720, 760, 860 和900 nm时的PEEM图像

    Fig. 1.  (a) Schematic diagram of the experiment of exciting fs-PSP; (b)−(e) the PEEM images when the incident laser wavelength is 720 nm, 760 nm, 860 nm and 900 nm, respectively.

    图 2  (a)−(d) 750 nm入射激光, 随偏振角度变化的PEEM图像; (e) fs-PSP归一化的光发射电子产额随入射激光偏振角度变化的模拟和实验曲线

    Fig. 2.  (a)−(d) The PEEM images of the incident laser at 750 nm, changing with the polarization angle; (e) simulation and experimental curves of fs-PSP normalized light emission electron yield with incident laser polarization angle.

    图 3  (a)飞秒双光束泵浦-探测实验示意图; (b)−(e) 750 nm入射激光, 在探测光辐照区域, 随偏振角度变化的PEEM图像; (f) fs-PSP归一化的光发射电子产额随入射激光偏振角度变化的模拟和实验曲线

    Fig. 3.  (a) Schematic diagram of femtosecond dual-beam pumping-detection experiment; (b)−(e) the PEEM images of the incident laser at 750 nm in the area irradiated by the probe light with the polarization angle; (f) the simulation and experimental curves of fs-PSP normalized light emission electron yield with the incident laser polarization angle.

    表 1  fs-PSP的波长及干涉条纹周期随入射激光波长改变的数值

    Table 1.  The value of fs-PSP's wavelength and interference fringe period changing with the incident laser wavelength.

    入射光波长 $ {\lambda }_{\rm{L}}/ $nm720740760780800820840860880900
    fs-PSP拍频周期 $ {\lambda }_{\rm{B}}/ $µm5.96.16.66.77.07.17.27.37.57.7
    fs-PSP波长的理论值$ {\lambda }_{{\rm{s}}{\rm{s}}}/ $nm706726746766785805824844864883
    fs-PSP波长实验测得值$ {\lambda }_{{\rm{s}}{\rm{m}}}/ $nm700720744765784803821840859879
    下载: 导出CSV
  • [1]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [2]

    Ozbay E 2006 Science 311 189Google Scholar

    [3]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Xu H X, Wang W H 2018 Chem. Rev. 118 2882Google Scholar

    [4]

    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P 2015 Nano Lett. 15 3472Google Scholar

    [5]

    Pyayt A L, Wiley B, Xia Y, Chen A, Dalton L 2008 Nat. Nanotechnol. 3 660Google Scholar

    [6]

    Li X, Huang L, Tan Q, Bai B, Jin G 2011 Opt. Express 19 6541Google Scholar

    [7]

    Sumimura A, Ota M, Nakayama K, Ito M, Ishii Y, Fukuda M 2016 IEEE Photonics Technol. Lett. 28 2419Google Scholar

    [8]

    Chang K W, Huang C C 2016 Sci. Rep. 6 19609Google Scholar

    [9]

    Hu T, Qiu H, Zhang Z, Guo X, Liu C, Rouifed M S, Littlejohns C G, Reed G T, Wang H 2016 IEEE Photonics J. 8 4802209Google Scholar

    [10]

    Lemke C, Schneider C, Leißner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M 2013 Nano Lett. 13 1053Google Scholar

    [11]

    Bettina F, Philip K, Daniel P, Grisha S, Meir O, Fu L W, Thomas W, Michael H H, Timothy J D, Frank-J M Z H, Harald G 2017 Sci. Adv. 3 e1700721Google Scholar

    [12]

    Zu S, Han T Y, Jiang M L, Liu Z X, Jiang Q, Lin F, Zhu X, Fang Z Y 2019 Nano Lett. 19 775Google Scholar

    [13]

    Zu S, Han T Y, Jiang M L, Lin F, Zhu X, Fang Z Y 2018 ACS Nano 12 3908Google Scholar

    [14]

    Han T Y, Zu S, Li Z W, Jiang M L, Zhu X, Fang Z Y 2018 Nano Lett. 18 567Google Scholar

    [15]

    Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B, Zhu X, Fang Z Y 2018 Opto-Electron. 1 180007Google Scholar

    [16]

    EL-Khoury P Z, Abellan P, Gong Y, Hage F S, Cottom J, Joly A G, Brydson R, Ramasse Q M, Hess W P 2016 The Anakyst 141 3562Google Scholar

    [17]

    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Pelton M, Scherer N F 2012 ACS Nano 6 472Google Scholar

    [18]

    Liu X J, Wang Y, Potma E O 2012 Appl. Phys. Lett. 101 081116Google Scholar

    [19]

    Zhang W H, Fang Z Y, Zhu X 2017 Chem. Rev. 117 5095Google Scholar

    [20]

    Yin L L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano Lett. 5 1399Google Scholar

    [21]

    Fang Z Y, Zhu X 2013 Adv. Mater. 25 3840Google Scholar

    [22]

    Kubo A, Pontius N, Petek H 2007 Nano Lett. 7 470Google Scholar

    [23]

    Sun Q, Zu S, Misawa H 2020 J. Chem. Phys. 153 120902Google Scholar

    [24]

    Dąbrowski M, Dai Y N, Petek H 2017 J. Phys. Chem. Lett. 8 4446Google Scholar

    [25]

    Ditlbacher H, Krenn J R, Hohenau A, Leitner A, Aussenegg F R 2003 Appl. Phys. Lett. 83 3665Google Scholar

    [26]

    Radko I P, Bozhevolnyi S I, Brucoli G, Martı′n-Moreno L, Garcıá-Vidal F G, Boltaseva A 2008 Phys. Rev. B 78 115115Google Scholar

    [27]

    Baudrion A L, León-Pérez F, Mahboub O, Hohenau A, Ditlbacher H, Garcıá-Vidal F J, Dintinger J, Ebbesen T W, Martı′n-Moreno L, R.Krenn J 2008 Opt. Express 16 3420Google Scholar

    [28]

    Lu J, Petre C, Yablonovitch E, Conway J 2007 J. Opt. Soc. Am. B 24 2268Google Scholar

    [29]

    Klick A, Cruz S L, Lemke C, Großmann M, Beyer H, Fiutowski J, Rubahn H G, Mendez E R, Bauer M 2016 Appl. Phys. B 122 79Google Scholar

    [30]

    Zhang L X, Kubo A, Wang L, Petek H, Seideman T 2011 Phys. Rev. B 84 245442Google Scholar

    [31]

    Buckanie N M, Kirschbaum P, Sindermann S, Meyer zu J, Heringdorf F 2013 Ultramicroscopy 130 49Google Scholar

    [32]

    Gong Y, Joly A G, EI-Khoury P Z, Hess W P 2017 J. Phys. Chem. Lett. 8 49Google Scholar

    [33]

    Qin Y L, Song X W, Ji B Y, Xu Y, Lin J Q 2019 Opt. Lett. 44 2935Google Scholar

  • [1] 杨冬, 李中文, 田源, 孙帅帅, 田焕芳, 杨槐馨, 李建奇. 用于超快扫描电子显微镜的光发射电子枪及电子光学模拟. 物理学报, 2024, 73(22): 222901. doi: 10.7498/aps.73.20241245
    [2] 宋寒冰, 郎鹏, 季博宇, 徐洋, 宋晓伟, 林景全. 利用啁啾飞秒激光脉冲调控金薄膜中传输表面等离激元的群延迟色散. 物理学报, 2024, 73(17): 177102. doi: 10.7498/aps.73.20240973
    [3] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [4] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [5] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [6] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [7] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像. 物理学报, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [8] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [11] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [12] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [13] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应. 物理学报, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [14] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [15] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [16] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
    [17] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究. 物理学报, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [18] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究. 物理学报, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [19] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法. 物理学报, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [20] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察. 物理学报, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
计量
  • 文章访问数:  5233
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-22
  • 上网日期:  2021-05-10
  • 刊出日期:  2021-05-20

/

返回文章
返回