搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性

徐翔 张莹 闫庆 刘晶晶 王骏 徐新龙 华灯鑫

引用本文:
Citation:

不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性

徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫

Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures

Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin
PDF
HTML
导出引用
  • 能源及污染是新时代所面临的重要难题, 光催化技术可通过电解水产氢以及降解有机物污染物, 在一定程度上解决此问题. 而制备光催化活性较好、光生载流子分离效率高的光催化剂是这项技术的关键. 本文采用液相剥离法结合电泳沉积法制备得到具有不同堆垛结构的二硫化铼-石墨烯(ReS2-Gra, ReS2在上)与石墨烯-二硫化铼(Gra-ReS2, 石墨烯在上)范德瓦耳斯异质结薄膜, 并对其进行了光谱学表征. 将上述异质结作为光电极材料, 应用在光电化学反应中, 发现: 1) 不同的堆垛结构, 将影响异质结材料的光电化学特性, 即在相同条件下, 与ReS2-Gra光电极相比, Gra-ReS2光电极的光电流增大了54%; 2) 异质结的构建, 使得光电极材料的光电化学特性得到显著增强, 得到了更大且响应更迅速的光电流, 即Gra-ReS2光电极(2.47 μA)的光电流响应是纯ReS2光电极(1.16 μA)的2倍. 本工作为范德瓦耳斯异质结的制备提出新思路的同时, 也为太阳能转换器件的研究打下了理论基础.
    Energy and pollution are crucial problems. Photocatalysis technology is a way to solve the problem by electrolysis of aquatic hydrogen and degradation of organic pollutants. Preparing photocatalysts with fantastic photocatalytic activity and high photocarrier separation efficiency is a key technique. In recent years, two-dimensional (2D) nanomaterials have attracted much attention because of their unique structures and excellent properties, which are different from the traditional materials’. The 2D nanomaterials demonstrate in-plane covalent bonds and out-of-plane van der Waals interactions. Therefore, two 2D materials can form van der Waals heterojunctions by van der Waals forces, which are also known as nanocomposites. However, there is an interesting problem in the study of van der Waals heterojunctions in the field of photochemistry, which has not been paid attention to no studied. Specifically, that problem is whether the photochemical properties of the van der Waals heterojunctions are affected by the different stacking structures after the relationship between the upper and lower positions has been adjusted. In this paper, the van der Waals heterojunction films with different stacking structures ReS2-Gra (ReS2 on the top) and Gra-ReS2 (graphene on the top) are prepared by liquid phase exfoliation combined with electrophoretic deposition method. The heterojunctions are utilized as photoelectrodes in photochemical reactions, and the findings are as follows. i) Different stacking structures will affect the photoelectric chemical characteristics of heterojunctions: comparing with the ReS2-Gra photoelectrode, the photocurrent of the Gra-ReS2 photoelectrode increased by 54% under the same conditions. We think that the main reason is due to the fact that graphene has a zero-band gap structure and holds a wider spectral absorption range. ii) The construction of the heterojunction significantly enhances the photochemical properties of the photoelectrode materials, resulting in a larger and rapidly photocurrent response. The photocurrent response of the Gra-ReS2 photoelectrode (2.47 μA) is twice that of the pure ReS2 photoelectrode (1.16 μA). Based on the experimental results of this paper, a possible mechanism for effective separation and prolonged recombination of the photo-induced electro-hole pairs in ReS2/graphene heterojunction is proposed. This work not only puts forward new ideas for preparing the van der Waals heterojunctions, but also lays a theoretical foundation for further studying the solar energy conversion devices.
      通信作者: 徐新龙, xlxuphy@nwu.edu.cn ; 华灯鑫, xauthdx@163.com
    • 基金项目: 中国博士后科学基金(批准号: 2020M673611XB)、陕西省教育厅科研基金(批准号: 20JK0781, 17JS094)和陕西省自然科学基金(批准号: 2018JQ4046)资助的课题
      Corresponding author: Xu Xin-Long, xlxuphy@nwu.edu.cn ; Hua Deng-Xin, xauthdx@163.com
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M673611XB), the Scientific Research Foundation of the Education Department of Shannxi Province, China (Grant Nos. 20JK0781, 17JS094), and the Natural Science Foundation of Shannxi Province, China (Grant No. 2018JQ4046)
    [1]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [2]

    Zhang Z, Lin P, Liao Q, Kang Z, Zhang Y 2019 Adv. Mater. 31 1806411Google Scholar

    [3]

    He M M, Quan C J, He C, Huang Y Y, Zhu L P, Yao Z H, Zhang S J, Bai J T, Xu X L 2017 J. Phys. Chem. C 121 27147Google Scholar

    [4]

    Quan C J, Lu C H, He C, Xu X, Huang Y Y, Zhao Q Y, Xu X L 2019 Adv. Mater. Interfaces 6 1801733Google Scholar

    [5]

    Zhang X Y, Selkirk A, Zhang S F, Huang J W, Li Y X, Xie Y F, Dong N N, Cui Y, Zhang L, Blau W J, Wang J 2017 Chem. Eur. J 23 3321Google Scholar

    [6]

    Pasqual R, Schaibley J R, Jones M A, Ross S J, Wu S F, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Xu X D 2015 Nat. Commun. 6 6242Google Scholar

    [7]

    Sun Y, Zhou Z S, Huang Z, Wu J B, Zhou L J, Cheng Y, Liu J Q, Zhu C, Liu K H, Wang X Y, Wang J P, Huang W, Wang L 2019 Adv. Mater. 31 1806562Google Scholar

    [8]

    李亮, 皮乐晶, 李会巧, 翟天佑 2017 科学通报 62 3134Google Scholar

    Li L, Pi Y J, Li H Q, Zhai T Y, 2017 Chin. Sci. Bull. 62 3134Google Scholar

    [9]

    Huang M J, Zhou Y X, Guo Y H, Wang H, Hu X R, Xu X L, Ren Z Y 2018 J. Mater. Sci. 53 7744Google Scholar

    [10]

    Lu C H, Ma J Y, Si K Y, Xu X, Quan C J, He C, Xu X L 2019 Phys. Status Solidi A 216 1900544Google Scholar

    [11]

    Si K Y, Ma J Y, Lu C H, Zhou Y X, He C, Yang D, Wang X, Xu X L 2020 Appl. Surf. Sci. 507 145082Google Scholar

    [12]

    徐铖, 彭涛, 管明艳, 张强, 马锡英 2019 苏州科技大学学报(自然科学版) 36 23Google Scholar

    Xu C, Peng T, Guan M Y, Zhang Q, Ma X Y 2019 J. Suzhou Univ. Sci. Technol. (Nat. Sci.) 36 23Google Scholar

    [13]

    Tiwari Santosh K, Sumanta S, Nannan W, Andrzej H 2019 J. Sci-Adv. Mater. Dev. 5 10Google Scholar

    [14]

    Thomas W R, Amir Y 2010 Nat. Nanotechnol. 5 699Google Scholar

    [15]

    Huimei L, Bo X, J-M L, Jiang Y, Feng M, Chun-Gang D, G W X 2016 Phys. Chem. Chem. Phys. 18 14222Google Scholar

    [16]

    廖杨芳, 詹建友, 宋春红, 杨姗姗, 吕兵 2019 低温物理学报 41 191Google Scholar

    Liao Y F, Zhan J Y, Song C H, Yang S S, Lv B 2019 Low Temp. Phys. Lett. 41 191Google Scholar

    [17]

    Zhang Q, Wang W, Zhang J, Zhu X, Fu L 2018 Adv. Mater. 30 1707123Google Scholar

    [18]

    Wan X, Chen K, Liu D 2012 Chem. Mater. 24 3906Google Scholar

    [19]

    Zhai T, Li H, Gan L, Ma Y, Hafeez M 2016 Adv. Funct. Mater. 26 4551Google Scholar

    [20]

    Feng Y, Zhou W, Wang Y, Zhou J, Liu E, Fu Y, Ni Z, Wu X, Yuan H, Miao F 2015 Phys. Rev. B 92 054110Google Scholar

    [21]

    Liu H, Liu M, Tang R, Luo Z C, Xu W C, Luo A P, Wang F Z 2016 Opt. Eng. 55 081308Google Scholar

    [22]

    Guo Y H, Zhao Q Y, Yao Z H, Si K Y, Zhou Y X, Xu X L 2017 Nanotechnology 28 335602Google Scholar

    [23]

    Zhao Q, Guo Y, Zhou Y, Yan X, Xu X 2017 J. Colloid Interfaces Sci. 490 287Google Scholar

    [24]

    Li L Q, Long R, Prezhdo O V 2017 Chem. Mater. 29 2466Google Scholar

    [25]

    Long R, Prezhdo O V 2016 Nano Lett. 16 1996Google Scholar

  • 图 1  ReS2和Graphene纳米片制备过程示意图

    Fig. 1.  Preparation process of ReS2 and Graphene nanosheets

    图 2  Gra-ReS2异质结薄膜的制备过程示意图

    Fig. 2.  Preparation process of Gra-ReS2 heterojunction.

    图 3  ReS2、石墨烯、Gra-ReS2、ReS2-Gra异质结拉曼光谱图

    Fig. 3.  Raman spectra of ReS2, graphene, Gra-ReS2 heterojunction and ReS2-Gra heterojunction.

    图 4  光电极的I-V曲线

    Fig. 4.  The I-V curves of photoelectric electrode.

    图 5  (a) 光电极的I-T曲线; (b) 各光电极的最大光电流柱状图

    Fig. 5.  (a) The I-T curves of photoelectric electrode; (b) maximum photocurrent histogram of photoelectric electrode.

    图 6  (a) Gra-ReS2和(b) ReS2-Gra光电极的光电流上升及衰减时间响应

    Fig. 6.  Rising and decay response time of photocurrents from (a) Gra-ReS2 photoelectrode and (b) ReS2-Gra photoelectrode.

    图 7  Gra-ReS2异质结的能带排列与电子迁移示意图(EV-价带, EC-导带)

    Fig. 7.  Gra-ReS2 heterojunction band alignment and electron mobility, where EC is energy of conduction band minimum, EV is energy of valence band maximum.

    表 1  二维材料的瞬态光电流

    Table 1.  Transient photocurrent of two-dimensional materials.

    2D materialsPhotocurrent/µA
    Graphene0.37
    Bi2S3[22]0.60
    WS2[10]0.52
    MoS2[23]0.64
    ReS21.16
    MoS2-Graphene[9]0.81
    MoS2-WS2[10]1.48
    ReS2-Gra1.60
    Gra-ReS22.47
    下载: 导出CSV
  • [1]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [2]

    Zhang Z, Lin P, Liao Q, Kang Z, Zhang Y 2019 Adv. Mater. 31 1806411Google Scholar

    [3]

    He M M, Quan C J, He C, Huang Y Y, Zhu L P, Yao Z H, Zhang S J, Bai J T, Xu X L 2017 J. Phys. Chem. C 121 27147Google Scholar

    [4]

    Quan C J, Lu C H, He C, Xu X, Huang Y Y, Zhao Q Y, Xu X L 2019 Adv. Mater. Interfaces 6 1801733Google Scholar

    [5]

    Zhang X Y, Selkirk A, Zhang S F, Huang J W, Li Y X, Xie Y F, Dong N N, Cui Y, Zhang L, Blau W J, Wang J 2017 Chem. Eur. J 23 3321Google Scholar

    [6]

    Pasqual R, Schaibley J R, Jones M A, Ross S J, Wu S F, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Xu X D 2015 Nat. Commun. 6 6242Google Scholar

    [7]

    Sun Y, Zhou Z S, Huang Z, Wu J B, Zhou L J, Cheng Y, Liu J Q, Zhu C, Liu K H, Wang X Y, Wang J P, Huang W, Wang L 2019 Adv. Mater. 31 1806562Google Scholar

    [8]

    李亮, 皮乐晶, 李会巧, 翟天佑 2017 科学通报 62 3134Google Scholar

    Li L, Pi Y J, Li H Q, Zhai T Y, 2017 Chin. Sci. Bull. 62 3134Google Scholar

    [9]

    Huang M J, Zhou Y X, Guo Y H, Wang H, Hu X R, Xu X L, Ren Z Y 2018 J. Mater. Sci. 53 7744Google Scholar

    [10]

    Lu C H, Ma J Y, Si K Y, Xu X, Quan C J, He C, Xu X L 2019 Phys. Status Solidi A 216 1900544Google Scholar

    [11]

    Si K Y, Ma J Y, Lu C H, Zhou Y X, He C, Yang D, Wang X, Xu X L 2020 Appl. Surf. Sci. 507 145082Google Scholar

    [12]

    徐铖, 彭涛, 管明艳, 张强, 马锡英 2019 苏州科技大学学报(自然科学版) 36 23Google Scholar

    Xu C, Peng T, Guan M Y, Zhang Q, Ma X Y 2019 J. Suzhou Univ. Sci. Technol. (Nat. Sci.) 36 23Google Scholar

    [13]

    Tiwari Santosh K, Sumanta S, Nannan W, Andrzej H 2019 J. Sci-Adv. Mater. Dev. 5 10Google Scholar

    [14]

    Thomas W R, Amir Y 2010 Nat. Nanotechnol. 5 699Google Scholar

    [15]

    Huimei L, Bo X, J-M L, Jiang Y, Feng M, Chun-Gang D, G W X 2016 Phys. Chem. Chem. Phys. 18 14222Google Scholar

    [16]

    廖杨芳, 詹建友, 宋春红, 杨姗姗, 吕兵 2019 低温物理学报 41 191Google Scholar

    Liao Y F, Zhan J Y, Song C H, Yang S S, Lv B 2019 Low Temp. Phys. Lett. 41 191Google Scholar

    [17]

    Zhang Q, Wang W, Zhang J, Zhu X, Fu L 2018 Adv. Mater. 30 1707123Google Scholar

    [18]

    Wan X, Chen K, Liu D 2012 Chem. Mater. 24 3906Google Scholar

    [19]

    Zhai T, Li H, Gan L, Ma Y, Hafeez M 2016 Adv. Funct. Mater. 26 4551Google Scholar

    [20]

    Feng Y, Zhou W, Wang Y, Zhou J, Liu E, Fu Y, Ni Z, Wu X, Yuan H, Miao F 2015 Phys. Rev. B 92 054110Google Scholar

    [21]

    Liu H, Liu M, Tang R, Luo Z C, Xu W C, Luo A P, Wang F Z 2016 Opt. Eng. 55 081308Google Scholar

    [22]

    Guo Y H, Zhao Q Y, Yao Z H, Si K Y, Zhou Y X, Xu X L 2017 Nanotechnology 28 335602Google Scholar

    [23]

    Zhao Q, Guo Y, Zhou Y, Yan X, Xu X 2017 J. Colloid Interfaces Sci. 490 287Google Scholar

    [24]

    Li L Q, Long R, Prezhdo O V 2017 Chem. Mater. 29 2466Google Scholar

    [25]

    Long R, Prezhdo O V 2016 Nano Lett. 16 1996Google Scholar

  • [1] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [2] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [3] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [5] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [6] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [7] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [8] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [9] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [10] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [11] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [12] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [13] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [14] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [15] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [16] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [17] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [18] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [19] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [20] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
计量
  • 文章访问数:  5517
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2020-12-14
  • 上网日期:  2021-04-26
  • 刊出日期:  2021-05-05

/

返回文章
返回