搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频容性耦合Ar/O2等离子体的轴向诊断

操礼阳 马晓萍 邓丽丽 卢曼婷 辛煜

引用本文:
Citation:

射频容性耦合Ar/O2等离子体的轴向诊断

操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜

Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma

Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu
PDF
HTML
导出引用
  • 实验通过朗缪尔探针辅助激光诱导解离技术对27.12 MHz驱动的不同含氧量条件下容性耦合Ar等离子体进行了诊断研究. 通过质量流量计改变通入Ar与O2的流量以得到不同含氧量的等离子体. 结果表明, 由于氧气的分解吸附反应需要消耗电子, 致使朗缪尔探针测得的电子能量概率函数(EEPF)的中能部分随着含氧量的上升而下降. 射频输入功率增加时电子密度的上升引起了电子-电子碰撞热化, 从而使EEPF由Druyvesteyn分布向麦克斯韦分布转变. 在功率电极附近, 由于鞘层边界附近的电子氧气分子碰撞时的分解吸附反应使得鞘层区附近的负离子密度较高. 另外, 负离子密度沿着轴向呈现勺型分布的特征. 这主要是由于负离子在双极电场作用下向等离子体放电中心扩散的过程中所存在的负离子产生与损失的反应过程导致.
    The capacitively coupled Ar plasma containing oxygen, driven by a radio frequency of 27.12 MHz, is investigated by laser-induced photo-detachment technique assisted with a Langmuir probe. The plasmas with different amounts of oxygen are obtained by changing the flow of Ar and oxygen, each of which is controlled by a mass flow controller. The axial distribution of plasma characteristic can be measured by changing the relative axial position of the Langmuir probe between the parallel electrodes. The electron density and electron temperature are calculated from the current-voltage curve measured by the scanning Langmuir probe, and the electronegativity is obtained from the current curves of the probe with the laser-induced photo-detachment technique. The negative ion density can be calculated from the electron density and the electronegativity. It is shown that with oxygen flow rate increasing, the dissociative attachment of oxygen molecules with electrons will consume the electrons with the middle energy in the electron energy probability function (EEPF) measured by Langmuir probe. The EEPF evolves from Druyvesteyn to Maxwellian distribution due to the thermalization by the e-e interaction with applied power increasing. It is worth mentioning that a depression in the EEPF curve will appear when discharging high-pressure Ar gas containing oxygen. This depression can also be caused by the dissociative attachment of oxygen molecules with electrons where the threshold energy is around 4.5 eV. The axial profile of the electron density is calculated from the EEPF changing from a linear rise in pure Ar plasma to a flater phase of the distribution due to the negative ions such as oxygen introduced into the plasma. The electron temperature changes a little at different axial positions. The rise of negative ion density nearby the sheath of powered electrode is due to the dissociative attachment caused by the collision of oxygen molecules with energetic electrons. In addition, the axial distribution of electronegativity takes on a shape of spoon, which results from the consequence of generation and loss of negative ions in the process of the ambipolar-electric-field-driven diffusion to the plasma center.
      通信作者: 辛煜, yuxin@suda.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11675117, 11175127) 和江苏省高等院校优势学科建设 (PAPD)资助的课题
      Corresponding author: Xin Yu, yuxin@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675117, 11175127) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China
    [1]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5

    [2]

    Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887

    [3]

    Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112Google Scholar

    [4]

    Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955Google Scholar

    [5]

    Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413Google Scholar

    [6]

    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006Google Scholar

    [7]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [8]

    Liu Y X, Zhang Q Z, Jiang W, Jiang X Z, Lu W Q, Wang Y N 2012 Plasma Sources Sci. Technol. 21 035010Google Scholar

    [9]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [10]

    Schulze J, Donko Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [11]

    Tsendin L D 1989 Sov. Phys. Tech. Phys. 34 11

    [12]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [13]

    Schulze J, Donko Z, Derzsi A, Korolov I, Schuengel E 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [14]

    Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [15]

    Liu Y X, Korolov I, Schüngel E, Wang Y N, Donkó Z, Schulze J 2017 Phys. Plasma. 24 073512Google Scholar

    [16]

    Irving S 1968 Proc. Kodak Photoresist Seminar (Rochester, New York: Eastman, Kodak) pp26−9

    [17]

    Chashmejahanbin M R, Salimi A and Ershad Langroudi A 2014 Int. J. Adhes. Adhes. 49 44Google Scholar

    [18]

    Vesel A, Mozetic M 2017 J. Phys. D: Appl. Phys. 50 293001Google Scholar

    [19]

    Kawai Y, Konishi N, Watanabe J, Ohmi T 1994 Appl. Phys. Lett. 64 2223Google Scholar

    [20]

    Hess D W 1999 IBM J. Res. Dev. 43 127Google Scholar

    [21]

    Gudmundsson J T, Ventéjou B 2015 J. Appl. Phys. 118 153302Google Scholar

    [22]

    Gudmundsson J T, Proto A 2019 Plasma Sources Sci. Technol. 28 045012Google Scholar

    [23]

    Gudmundsson J T, Snorrason D I 2017 J. Appl. Phys. 122 193302Google Scholar

    [24]

    Gudmundsson J T, Snorrason D Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009Google Scholar

    [25]

    Gudmundsson J T, Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016Google Scholar

    [26]

    Wegner T, Kullig C, Meichsner J 2015 Contrib. Plasma Phys. 55 728736Google Scholar

    [27]

    Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A, Wang Y N 2012 Appl. Phys. Lett. 101 114101Google Scholar

    [28]

    You K H, Schulze J, Derzsi A, Donk Z, Yeom H J, Kim J H, Seong D J, Lee H C 2019 Phys. Plasmas 26 013503Google Scholar

    [29]

    Kechkar S, Swift P, Kelly S, Kumar S, Daniels S Turner M 2017 Plasma Sources Sci. Technol. 26 065009Google Scholar

    [30]

    Bacal M, Hamilton G W 1979 Phys. Rev. Lett. 42 1538Google Scholar

    [31]

    Devynck P, Auvray J, Bacal M, Berlemont P, Brunetear J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873Google Scholar

    [32]

    Balgiiti-Sube F E, Baksht F G, Bacal M 1996 Rev. Sci. Instrum. 67 2221Google Scholar

    [33]

    Nikitin A G, Balghiti F Ei, Bacal M 1996 Plasma Sources Sci. Technol. 5 37Google Scholar

    [34]

    Hamabe M, Oka Y, Tsumori O, Kuroda T, Bacal M 1998 Rev. Sci. Instrum. 69 1298Google Scholar

    [35]

    Nishiura M, Sasao M, Matsumoto Y, Hamabe M, Wada M, Yamaoka H, Bacal M 2002 Rev. Sci. Instrum. 73 973Google Scholar

    [36]

    Bryant P M, Bradley J W 2013 Plasma Sources Sci. Technol. 22 015014Google Scholar

    [37]

    You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205Google Scholar

    [38]

    Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021Google Scholar

    [39]

    Scribbins S, Bowes M, Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045203Google Scholar

    [40]

    Bowes M, Bradley J W 2014 J. Phys. D: Appl. Phys. 47 265202Google Scholar

    [41]

    Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2016 Appl. Phys. Lett. 109 124101Google Scholar

    [42]

    Oudini N, Sirse N, Benallal R, Taccogna F, Anesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509Google Scholar

    [43]

    Oudini N, Taccogna F, Bendib A, Anesland A 2014 Phys. Plasmas 21 063515Google Scholar

    [44]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002Google Scholar

    [45]

    Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003Google Scholar

    [46]

    Sirse N, Oudini O, Bendib A, Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01Google Scholar

    [47]

    Kullig C, Dittmann K, Meichsner J 2010 Plasma Sources Sci. Technol. 19 065011Google Scholar

    [48]

    Kullig C, Dittmann K, Meichsner J 2012 Phys. Plasmas 19 073517Google Scholar

    [49]

    Dittmann K, Kullig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038Google Scholar

    [50]

    Kullig C, Dittmann K, Wegner T, Sheykin I, Matyash K, Loffhagen D, Schnerder R, Meichsner J 2012 Contrib. Plasma Phys. 52 836Google Scholar

    [51]

    Kullig C, Wegner Th, Meichsner J 2015 Phys. Plasmas 22 043515Google Scholar

    [52]

    Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502Google Scholar

    [53]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Y Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [54]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100Google Scholar

    [55]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [56]

    Godyak A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [57]

    Trunec D, Spanel P, Smith D 2003 Chem. Phys. Lett. 372 728Google Scholar

    [58]

    Itikawa Y 2009 J. Phys. Chem. Ref. Data. 38 1Google Scholar

    [59]

    迈克尔·A·力伯曼, 阿伦·J·里登伯格 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第554页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) p554 (in Chinese)

    [60]

    王涛, 王俊, 唐成双, 杨郁, 辛煜 2017 核聚变与等离子体物理 37 1Google Scholar

    Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nucl. Fusion Plasma Phys. 37 1Google Scholar

    [61]

    Lee S H, Iza F, Lee J K 2006 Phys. Plasmas 13 057102Google Scholar

  • 图 1  安装有Nd:YAG激光器和朗缪尔探针的电容耦合等离子体实验装置

    Fig. 1.  The capacitively coupled plasma experimental device equipped with a Nd:YAG laser and a Langmuir probe.

    图 2  朗缪尔探针结构示意图

    Fig. 2.  The schematic diagram of the structure of Langmuir probe.

    图 3  等离子体中心位置处探针测得的典型电流曲线

    Fig. 3.  The typical current curves measured by Langmuir probe at z = 0 in the plasma.

    图 4  不同气压和功率条件下极板中心处EEPF随含氧量的变化情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Fig. 4.  The dependence of EEPF on the content of O2 for various discharge pressures and powers at z = 0 mm: (a) 2 Pa-50 W;(b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 5  不同气压和功率条件下电子密度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Fig. 5.  The axial distribution of electron density on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 6  不同气压和功率条件下电子温度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-15 0 W; (f) 12 Pa-150 W

    Fig. 6.  The axial distribution of electron temperature on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 7  不同气压和功率条件下电负度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Fig. 7.  The axial distribution of the electronegativity on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

    图 8  不同气压和功率条件下负离子密度随含氧量的轴向分布情况 (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W

    Fig. 8.  The axial distribution of negative ion density on the content of O2 for various discharge pressures and powers: (a) 2 Pa-50 W; (b) 6 Pa-50 W; (c) 12 Pa-50 W; (d) 2 Pa-150 W; (e) 6 Pa-150 W; (f) 12 Pa-150 W.

  • [1]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Progressing (New York: Wiley) pp1−5

    [2]

    Levitskii S M 1957 Sov. Phys. Tech. Phys. 2 887

    [3]

    Godyak V A, Khanneh A S 1986 IEEE Trans. Plasma Sci. 14 112Google Scholar

    [4]

    Lieberman M A, Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955Google Scholar

    [5]

    Aliev Y M, Kaganovich I D, Schluter H 1997 Phys. Plasmas. 4 2413Google Scholar

    [6]

    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006Google Scholar

    [7]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [8]

    Liu Y X, Zhang Q Z, Jiang W, Jiang X Z, Lu W Q, Wang Y N 2012 Plasma Sources Sci. Technol. 21 035010Google Scholar

    [9]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [10]

    Schulze J, Donko Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [11]

    Tsendin L D 1989 Sov. Phys. Tech. Phys. 34 11

    [12]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [13]

    Schulze J, Donko Z, Derzsi A, Korolov I, Schuengel E 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [14]

    Liu Y X, Schüngel E, Korolov I, Donkó Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [15]

    Liu Y X, Korolov I, Schüngel E, Wang Y N, Donkó Z, Schulze J 2017 Phys. Plasma. 24 073512Google Scholar

    [16]

    Irving S 1968 Proc. Kodak Photoresist Seminar (Rochester, New York: Eastman, Kodak) pp26−9

    [17]

    Chashmejahanbin M R, Salimi A and Ershad Langroudi A 2014 Int. J. Adhes. Adhes. 49 44Google Scholar

    [18]

    Vesel A, Mozetic M 2017 J. Phys. D: Appl. Phys. 50 293001Google Scholar

    [19]

    Kawai Y, Konishi N, Watanabe J, Ohmi T 1994 Appl. Phys. Lett. 64 2223Google Scholar

    [20]

    Hess D W 1999 IBM J. Res. Dev. 43 127Google Scholar

    [21]

    Gudmundsson J T, Ventéjou B 2015 J. Appl. Phys. 118 153302Google Scholar

    [22]

    Gudmundsson J T, Proto A 2019 Plasma Sources Sci. Technol. 28 045012Google Scholar

    [23]

    Gudmundsson J T, Snorrason D I 2017 J. Appl. Phys. 122 193302Google Scholar

    [24]

    Gudmundsson J T, Snorrason D Hannesdottir H 2018 Plasma Sources Sci. Technol. 27 025009Google Scholar

    [25]

    Gudmundsson J T, Lieberman M A 2015 Plasma Sources Sci. Technol. 24 035016Google Scholar

    [26]

    Wegner T, Kullig C, Meichsner J 2015 Contrib. Plasma Phys. 55 728736Google Scholar

    [27]

    Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A, Wang Y N 2012 Appl. Phys. Lett. 101 114101Google Scholar

    [28]

    You K H, Schulze J, Derzsi A, Donk Z, Yeom H J, Kim J H, Seong D J, Lee H C 2019 Phys. Plasmas 26 013503Google Scholar

    [29]

    Kechkar S, Swift P, Kelly S, Kumar S, Daniels S Turner M 2017 Plasma Sources Sci. Technol. 26 065009Google Scholar

    [30]

    Bacal M, Hamilton G W 1979 Phys. Rev. Lett. 42 1538Google Scholar

    [31]

    Devynck P, Auvray J, Bacal M, Berlemont P, Brunetear J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873Google Scholar

    [32]

    Balgiiti-Sube F E, Baksht F G, Bacal M 1996 Rev. Sci. Instrum. 67 2221Google Scholar

    [33]

    Nikitin A G, Balghiti F Ei, Bacal M 1996 Plasma Sources Sci. Technol. 5 37Google Scholar

    [34]

    Hamabe M, Oka Y, Tsumori O, Kuroda T, Bacal M 1998 Rev. Sci. Instrum. 69 1298Google Scholar

    [35]

    Nishiura M, Sasao M, Matsumoto Y, Hamabe M, Wada M, Yamaoka H, Bacal M 2002 Rev. Sci. Instrum. 73 973Google Scholar

    [36]

    Bryant P M, Bradley J W 2013 Plasma Sources Sci. Technol. 22 015014Google Scholar

    [37]

    You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205Google Scholar

    [38]

    Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021Google Scholar

    [39]

    Scribbins S, Bowes M, Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045203Google Scholar

    [40]

    Bowes M, Bradley J W 2014 J. Phys. D: Appl. Phys. 47 265202Google Scholar

    [41]

    Oudini N, Sirse N, Taccogna F, Ellingboe A R, Bendib A 2016 Appl. Phys. Lett. 109 124101Google Scholar

    [42]

    Oudini N, Sirse N, Benallal R, Taccogna F, Anesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509Google Scholar

    [43]

    Oudini N, Taccogna F, Bendib A, Anesland A 2014 Phys. Plasmas 21 063515Google Scholar

    [44]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002Google Scholar

    [45]

    Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003Google Scholar

    [46]

    Sirse N, Oudini O, Bendib A, Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01Google Scholar

    [47]

    Kullig C, Dittmann K, Meichsner J 2010 Plasma Sources Sci. Technol. 19 065011Google Scholar

    [48]

    Kullig C, Dittmann K, Meichsner J 2012 Phys. Plasmas 19 073517Google Scholar

    [49]

    Dittmann K, Kullig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038Google Scholar

    [50]

    Kullig C, Dittmann K, Wegner T, Sheykin I, Matyash K, Loffhagen D, Schnerder R, Meichsner J 2012 Contrib. Plasma Phys. 52 836Google Scholar

    [51]

    Kullig C, Wegner Th, Meichsner J 2015 Phys. Plasmas 22 043515Google Scholar

    [52]

    Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502Google Scholar

    [53]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Y Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [54]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100Google Scholar

    [55]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [56]

    Godyak A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [57]

    Trunec D, Spanel P, Smith D 2003 Chem. Phys. Lett. 372 728Google Scholar

    [58]

    Itikawa Y 2009 J. Phys. Chem. Ref. Data. 38 1Google Scholar

    [59]

    迈克尔·A·力伯曼, 阿伦·J·里登伯格 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第554页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) p554 (in Chinese)

    [60]

    王涛, 王俊, 唐成双, 杨郁, 辛煜 2017 核聚变与等离子体物理 37 1Google Scholar

    Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nucl. Fusion Plasma Phys. 37 1Google Scholar

    [61]

    Lee S H, Iza F, Lee J K 2006 Phys. Plasmas 13 057102Google Scholar

  • [1] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用. 物理学报, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [3] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] 林芷伊, 简俊涛, 王小华, 杭纬. 激光诱导铝等离子体中原子和离子组分膨胀特性. 物理学报, 2018, 67(18): 185201. doi: 10.7498/aps.67.20180595
    [5] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [6] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [7] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术. 物理学报, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [8] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [10] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [11] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [12] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [13] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [14] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [15] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [16] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用. 物理学报, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [19] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理. 物理学报, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [20] 朱莳通, 沈文达. 强激光等离子体的光学度规描述. 物理学报, 1993, 42(9): 1438-1442. doi: 10.7498/aps.42.1438
计量
  • 文章访问数:  3289
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-12
  • 修回日期:  2021-01-24
  • 上网日期:  2021-05-27
  • 刊出日期:  2021-06-05

/

返回文章
返回