-
大气压等离子体因具有很多独特优势从而在材料制备和表面工艺领域备受关注. 本文利用大气压针-板电晕放电等离子体射流制备氧化钛(TiO2)薄膜, 研究了电晕极性和放电参数对薄膜特性的影响. 实验测试了正负电晕等离子体射流的电学性能、发展过程和发射光谱, 并对不同条件下制备的TiO2薄膜进行了表征和分析. 结果表明: 负电晕等离子体射流制备的TiO2薄膜表面更均匀而且薄膜中钛(Ti)含量更高. 正负电晕等离子体射流制备的薄膜的结合力均优于4.7 N/cm, 表面电阻低于1010 Ω. 此外, 发现TiO2薄膜在基底表面沉积和在气相中成核存在竞争机制, 并进一步阐述了电晕放电等离子体制备薄膜的成膜机理和不同极性放电的差异. 本文结果将为大气压等离子体制备均匀、致密的功能氧化物薄膜材料提供有益参考.Atmospheric pressure plasma jet has received increasing attention due to its wide potential applications such as in material processing and surface modification. This paper presents the characteristics of titanium oxide (TiO2) thin films deposited by using atmospheric pressure corona plasma jet based on a needle-plate configuration. The influences of corona polarity and operating parameters on the properties of TiO2 films are investigated. The characteristics of positive and negative corona discharge, the developing process and the emission spectrum of the plasma jet are tested, and the TiO2 films prepared under different conditions are measured and analyzed. The results show that the TiO2 film prepared by negative corona plasma has a more uniform surface, and the Ti content in TiO2 film is higher than that by the positive corona plasma. The adhesion force is higher than 4.7 N/cm and the surface resistance of the film is less than 1010 Ω. The deposition of the TiO2 film is closely related to the nucleation mechanism of the precursor in the plasma jet and/or the interface between jet and substrate. These results will provide useful reference for preparing uniform and functional oxide film materials by atmospheric pressure plasma jet.
-
Keywords:
- atmospheric pressure plasma /
- corona discharge /
- film deposition /
- TiO2 film
[1] Yu J C, Yu J, Ho W, Zhao J 2002 J. Photochem. Photobiol., A 148 331Google Scholar
[2] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O’Shea K, Entezari M H, Dionysiou D D 2012 Appl. Catal., B 125 331Google Scholar
[3] Chen X, Mao S S 2007 Chem. Rev. 107 2891Google Scholar
[4] Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A 2011 Langmuir 27 3275Google Scholar
[5] Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U 2013 Nano Lett. 13 5329Google Scholar
[6] Tong X, Lin E, Wu J, Wang Z M 2016 Adv. Sci. 3 1500201Google Scholar
[7] Stefik M, Heiligtag F J, Niederberger M, Grätzel M 2013 ACS Nano 7 8981Google Scholar
[8] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar
[9] Lee Y, Chae J, Kang M 2010 J. Ind. Eng. Chem. 16 609Google Scholar
[10] 赵坤, 朱凤, 王莉芳, 孟铁军, 张保澄, 赵夔 2000 物理学报 50 1390Google Scholar
Zhao K, Zhu F, Wang L F, Meng T J, Zhang B C, Zhao K 2000 Acta Phys. Sin. 50 1390Google Scholar
[11] Alvarez R, Romero-Gomez P, Gil-Rostra J, Cotrino J, Yubero F, GonzalezElipe A R, Palmero A 2013 Phys. Status Solidi A 210 796Google Scholar
[12] Sung Y M 2013 Energy Procedia 34 582Google Scholar
[13] Mathur S, Kuhn P 2006 Surf. Coat. Technol. 201 807Google Scholar
[14] Nie L H, Shi C, Xu Y, Wu Q H, Zhu A M 2007 Plasma Processes Polym. 4 574Google Scholar
[15] Huang C, Chang Y C, Wu S Y 2010 J. Chin. Chem. Soc. 57 1204Google Scholar
[16] Mauchauffé R, Kang S C, Moon S Y 2018 Surf. Coat. Technol. 376 84Google Scholar
[17] Chen Q Q, Liu Q R, Hubert J, Huang W D, Baert K, Wallaert G, Terryn H, Delplancke-Ogletree M P, Reniers F 2017 Surf. Coat. Technol. 310 173Google Scholar
[18] Fakhouri H, Salem D B, Carton O, Pulpytel J, Arefi-Khonsari F 2014 J. Phys. D: Appl. Phys. 47 265301Google Scholar
[19] Duminica F D, Maury F, Senocq F 2004 Surf. Coat. Technol. 188 255Google Scholar
[20] Kment S, Kluson P, Zabova H, Churpita A, Chichina M, Cada M, Gregora I, Krysa J, Hubicka Z 2009 Surf. Coat. Technol. 204 667Google Scholar
[21] Mauchauffé R, Kang S C, Kim J W, Kim J H, Moon S Y 2019 Curr. Appl. Phys. 19 1296Google Scholar
[22] Gazal Y, Dublanche-Tixier C, Chazelas C, Colas M, Carles P, Tristant P 2016 Thin Solid Films 600 43Google Scholar
[23] Perraudeau A, Dublanche-Tixier C, Tristant P, Chazelas C 2019 Appl. Surf. Sci. 493 703Google Scholar
[24] Banerjee S, Adhikari E, Sapkota P, Sebastian A, Ptasinska S 2020 Materials 13 2931Google Scholar
[25] Fakhouri H, Pulpytel J, Smith W, Zolfaghari A, Mortaheb H R, Meshkini F, Jafari R, Sutter E, Arefi-Khonsari F 2014 Appl. Catal., B 144 12Google Scholar
[26] Polat O, Aytug T, Lupini A R, Paranthaman P M, Ertugrul M, Bogorin D F, Meyer H M, Wang W, Pennycook S J, Christen D K 2013 Mater. Res. Bull. 48 352Google Scholar
[27] Matsui H, Tabata H 2005 J. Appl. Phys. 97 123511Google Scholar
[28] Simonsen M, Li Z, Sogaard E 2009 Appl. Surf. Sci. 255 8054Google Scholar
[29] Laidani N, Cheyssac P, Perriere J, Bartali R, Gottardi G, Luciu I, Micheli V 2010 J. Phys. D: Appl. Phys. 43 485402Google Scholar
[30] 丁新艳, 刘新群, 谭帅霞, 邓凯, 王进 2014 涂料工业 44 60Google Scholar
Ding X Y, Liu X Q, Tang S X, Deng K, Wang J 2014 Paint & Coatings Industry 44 60Google Scholar
[31] 海彬 2017 硕士学位论文 (郑州: 郑州大学)
Hai B 2017 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)
[32] Borras A, Sanchez-Valencia J R, Widmer R, Rico V J, Justo A, Gonzalez-Elipe A R 2009 Cryst. Growth Des. 9 2868Google Scholar
[33] Gazal Y, Chazelas C, Dublanche-Tixier C, Tristant P 2017 J. Appl. Phys. 121 123301Google Scholar
[34] Li X C, Lin X T, Wu K Y, Jia P G, Dong L F, Ran J X 2018 Plasma Processes Polym. 15 1700224Google Scholar
-
图 3 正极性电晕放电等离子体制备的TiO2薄膜 (a) CCD相机拍摄的表观图; (b) 相应区域的SEM图(电压峰-峰值Vs为2.0 kV, 薄膜沉积时间为3 min)
Fig. 3. Titanium oxide thin film prepared by positive corona discharge plasma: (a) Image taken by the CCD camera; (b) the SEM images of corresponding area. Vs = 2.0 kV. The deposition time of the thin film is 3 min.
图 4 负极性电晕放电等离子体制备TiO2薄膜 (a) CCD相机拍摄的表观图; (b) 特定区域的SEM图(电压峰-峰值Vs为2.0 kV, 薄膜沉积时间为3 min)
Fig. 4. Titanium oxide thin film prepared by negative corona discharge plasma: (a) Image taken by the CCD camera; (b) the SEM images of corresponding area. Vs = 2.0 kV. The deposition time of the thin film is 3 min.
表 1 不同极性电晕放电等离子体制备TiO2薄膜的含量参数比较
Table 1. Comparison of parameters of TiO2 films prepared with corona discharge plasma with different polarity.
电源
类型XPS Concentrations/%
(atom percent)Ratio Ti O C O/Ti 正极性 Surface 7.3 38.0 54.7 4.65 Sputtering 17.7 65.3 17.0 3.69 负极性 Surface 8.3 33.8 57.9 4.09 Sputtering 22.0 57.3 20.7 2.59 -
[1] Yu J C, Yu J, Ho W, Zhao J 2002 J. Photochem. Photobiol., A 148 331Google Scholar
[2] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O’Shea K, Entezari M H, Dionysiou D D 2012 Appl. Catal., B 125 331Google Scholar
[3] Chen X, Mao S S 2007 Chem. Rev. 107 2891Google Scholar
[4] Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A 2011 Langmuir 27 3275Google Scholar
[5] Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U 2013 Nano Lett. 13 5329Google Scholar
[6] Tong X, Lin E, Wu J, Wang Z M 2016 Adv. Sci. 3 1500201Google Scholar
[7] Stefik M, Heiligtag F J, Niederberger M, Grätzel M 2013 ACS Nano 7 8981Google Scholar
[8] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar
[9] Lee Y, Chae J, Kang M 2010 J. Ind. Eng. Chem. 16 609Google Scholar
[10] 赵坤, 朱凤, 王莉芳, 孟铁军, 张保澄, 赵夔 2000 物理学报 50 1390Google Scholar
Zhao K, Zhu F, Wang L F, Meng T J, Zhang B C, Zhao K 2000 Acta Phys. Sin. 50 1390Google Scholar
[11] Alvarez R, Romero-Gomez P, Gil-Rostra J, Cotrino J, Yubero F, GonzalezElipe A R, Palmero A 2013 Phys. Status Solidi A 210 796Google Scholar
[12] Sung Y M 2013 Energy Procedia 34 582Google Scholar
[13] Mathur S, Kuhn P 2006 Surf. Coat. Technol. 201 807Google Scholar
[14] Nie L H, Shi C, Xu Y, Wu Q H, Zhu A M 2007 Plasma Processes Polym. 4 574Google Scholar
[15] Huang C, Chang Y C, Wu S Y 2010 J. Chin. Chem. Soc. 57 1204Google Scholar
[16] Mauchauffé R, Kang S C, Moon S Y 2018 Surf. Coat. Technol. 376 84Google Scholar
[17] Chen Q Q, Liu Q R, Hubert J, Huang W D, Baert K, Wallaert G, Terryn H, Delplancke-Ogletree M P, Reniers F 2017 Surf. Coat. Technol. 310 173Google Scholar
[18] Fakhouri H, Salem D B, Carton O, Pulpytel J, Arefi-Khonsari F 2014 J. Phys. D: Appl. Phys. 47 265301Google Scholar
[19] Duminica F D, Maury F, Senocq F 2004 Surf. Coat. Technol. 188 255Google Scholar
[20] Kment S, Kluson P, Zabova H, Churpita A, Chichina M, Cada M, Gregora I, Krysa J, Hubicka Z 2009 Surf. Coat. Technol. 204 667Google Scholar
[21] Mauchauffé R, Kang S C, Kim J W, Kim J H, Moon S Y 2019 Curr. Appl. Phys. 19 1296Google Scholar
[22] Gazal Y, Dublanche-Tixier C, Chazelas C, Colas M, Carles P, Tristant P 2016 Thin Solid Films 600 43Google Scholar
[23] Perraudeau A, Dublanche-Tixier C, Tristant P, Chazelas C 2019 Appl. Surf. Sci. 493 703Google Scholar
[24] Banerjee S, Adhikari E, Sapkota P, Sebastian A, Ptasinska S 2020 Materials 13 2931Google Scholar
[25] Fakhouri H, Pulpytel J, Smith W, Zolfaghari A, Mortaheb H R, Meshkini F, Jafari R, Sutter E, Arefi-Khonsari F 2014 Appl. Catal., B 144 12Google Scholar
[26] Polat O, Aytug T, Lupini A R, Paranthaman P M, Ertugrul M, Bogorin D F, Meyer H M, Wang W, Pennycook S J, Christen D K 2013 Mater. Res. Bull. 48 352Google Scholar
[27] Matsui H, Tabata H 2005 J. Appl. Phys. 97 123511Google Scholar
[28] Simonsen M, Li Z, Sogaard E 2009 Appl. Surf. Sci. 255 8054Google Scholar
[29] Laidani N, Cheyssac P, Perriere J, Bartali R, Gottardi G, Luciu I, Micheli V 2010 J. Phys. D: Appl. Phys. 43 485402Google Scholar
[30] 丁新艳, 刘新群, 谭帅霞, 邓凯, 王进 2014 涂料工业 44 60Google Scholar
Ding X Y, Liu X Q, Tang S X, Deng K, Wang J 2014 Paint & Coatings Industry 44 60Google Scholar
[31] 海彬 2017 硕士学位论文 (郑州: 郑州大学)
Hai B 2017 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)
[32] Borras A, Sanchez-Valencia J R, Widmer R, Rico V J, Justo A, Gonzalez-Elipe A R 2009 Cryst. Growth Des. 9 2868Google Scholar
[33] Gazal Y, Chazelas C, Dublanche-Tixier C, Tristant P 2017 J. Appl. Phys. 121 123301Google Scholar
[34] Li X C, Lin X T, Wu K Y, Jia P G, Dong L F, Ran J X 2018 Plasma Processes Polym. 15 1700224Google Scholar
计量
- 文章访问数: 6774
- PDF下载量: 179
- 被引次数: 0