搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多次冲击加载-卸载路径下铁α-ε相变动力学特性研究

华颖鑫 刘福生 耿华运 郝龙 于继东 谭叶 李俊

引用本文:
Citation:

多次冲击加载-卸载路径下铁α-ε相变动力学特性研究

华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊

Kinetics of iron α-εphase transition under thermodynamic path of multiple shock loading-unloading

Hua Ying-Xin, Liu Fu-Sheng, Geng Hua-Yun, Hao Long, Yu Ji-Dong, Tan Ye, Li Jun
PDF
HTML
导出引用
  • 采用气炮作为加载手段, 结合反向碰撞技术和多台阶三层组合飞片技术, 通过精细的样品/窗口波剖面测量, 对典型加载-卸载-再加载路径下铁的相变动力学特性进行了研究. 观测到一次卸载阶段的多波结构及再加载段的双波结构. 获得首次逆相变阈值约为(11.3 ± 0.5) GPa, 首次加卸载相变特征时间为30 ns; 再加载相变起始压力为10—12 GPa, 且随着再加载初始态ε相质量分数降低而降低. 实验显示二次相变压力阈值与ε相残余质量分数以及逆相变子相所含孪晶、缺陷相关, 同时二次加载相转变速率比首次加载更快. 上述结果揭示了多晶铁相变动力学行为与加载路径的强耦合, 为相关研究提供了新的视角和实验支撑.
    The dynamics of iron under extreme conditions like high temperature and high pressure has been well studied for several decades. But, there have been not many reports about the phase transition kinetics coupled with complicated thermodynamic paths, especially loading-unloading-reloading path, which is closer to the real applications. A three-layer structure impactor with five stages performed in the front-surface experiment is made up to approach the special path. We choose epoxy to be the adhesive as it has low impedance and high strength. Tantalum, the standard material of high impedance which also has single wave structure, is selected for reloading process. The wave profile shows a 3-wave structure in the first unloading period and the inverse phase transition threshold is calculated to be about 11.3 GPa. This onset pressure of reverse phase transition is not consistent with Barker’s result, higher than his result (about 2.5 GPa). By comparing with recalculated result of Jensen’s data, we find that our result is consistent with theirs.In this work the inverse phase transition ends at about 10 GPa, the value from this way which is higher than Barker’s finding, even higher than his result of the threshold pressure of reverse phase transition. And at this state there remains 12%–15% of ε phase. So it cannot be seen as the completed reverse phase transformation. The phase transition onset pressure is 10–12 GPa on the reloading path and it is about 1–2 GPa lower than the first phase transition. By simulating the wave profile, the discrepancy of using different phase transformation characteristic time τ as 30 ns and 5 ns is analyzed. It can be seen that the phase transition rate of reloading is faster than that of the first loading process. These phenomena may be caused by the twins and the dislocations which are produced by the inverse phase transition. Also, as unloading time becomes longer, the mass fraction of ε phase becomes lesser and the onset pressure of α → ε phase transition becomes lower. This because with more ε phases transforming into α phase, more twins and dislocations will be produced in material. Therefore, it brings the lower onset pressure.
      通信作者: 李俊, lijun102@caep.cn
    • 基金项目: 科学挑战计划(批准号: TZ2016001)、冲击波与爆轰物理国家重点实验室(批准号: JCKYS2018212002)和NSAF联合基金(批准号: U1730248)资助的课题
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Science Challenge Project,China (Grant Nos. TZ2016001), the National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. JCKYS2018212002), and the NSAF(Grant No.U1730248)
    [1]

    Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp53−254, 39−240

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463Google Scholar

    [3]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291Google Scholar

    [4]

    Barker L M, Hollenbach R E 1972 J. Appl. Phys. 43 4669Google Scholar

    [5]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [6]

    Balchan A S, Drickamer H G 1961 Rev. Sci. Instrum. 32 308Google Scholar

    [7]

    Jamison J C, Lawson A W 1962 J. Appl. Phys. 33 776Google Scholar

    [8]

    Takahashi T, Bassett W A 1964 Science 145 483Google Scholar

    [9]

    Clenden R L, Drickamer H G 1964 J. Phys. Chem. Solids 25 865Google Scholar

    [10]

    Jensen B J, GrayⅢ G T, Hixson R S 2009 J. Appl. Phys. 105 103502Google Scholar

    [11]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911Google Scholar

    [12]

    Smith R F, Eggert J H, Swift D C, et al. 2013 J. Appl. Phys. 114 223507Google Scholar

    [13]

    施尚春, 陈攀森, 黄跃 1991 高压物理学报 5 205Google Scholar

    Shi S C, Chen P S, Huang Y 1991 Chin. J. High Pressure Phys. 5 205Google Scholar

    [14]

    Tan H, Weng J D, Wang X Proceedings of the 8th National Conference on Explosion Mechanics Ji’an, China, September 20−25, 2007 p75

    [15]

    谭华 2018 实验冲击波物理 (北京: 国防工业出版社) 第203−218页

    Tan H 2018 Experimental Shock Wave Physics (Vol. 1) (Beijing: National Defense Industry Press) pp3−18

    [16]

    Hayes D B W 1975 J. Appl. Phys. 46 3438Google Scholar

    [17]

    Boettger J C, Wallace D C 1997 1997 Phys. Rev. B 55 2840

    [18]

    种涛, 唐志平, 谭福利, 王桂吉, 赵剑衡 2018 高压物理学报 32 014102

    Chong T, Tang Z P, Tan F L, Wang G J, Zhao J H 2018 Chin. J. High Pressure Phys. 32 014102

    [19]

    Dougherty L M, GrayⅢ G T, Cerreta E K, McCabe R J, Field R D, Bingert J F 2009 Scr. Mater. 60 772Google Scholar

    [20]

    Wang S J, Sui M L, Chen Y T, Lu Q H, M E, Pei X Y, Li Q Z, Hu H B 2013 Sci. Rep. 3 1086Google Scholar

    [21]

    唐志平 2008 冲击相变(北京: 科学出版社) 第87−106页

    Tang Z P 2008 Shock Phase Transiformation (Vol. 1) (Beijing: Higher Education Press) (in Chinese)

  • 图 1  多台阶三层组合飞片结构及台阶分布示意图

    Fig. 1.  Schematic diagram of multistage triple-layer impactor.

    图 2  Fe的低压部分相图及热力学加卸载路径设计

    Fig. 2.  The phase diagram of iron and the thermodynamic loading path.

    图 3  实验装置系统示意图

    Fig. 3.  Schematic diagram of experimental set up.

    图 4  声速计算方法示意图(A点为碰撞时刻, B点为稀疏波到达时刻, C点为卸载过程中任意时刻)

    Fig. 4.  Schematic diagram of sound velocity calculation(A is the impact moment, B is the rarefaction wave arrival time, C is arbitrary time of unloading process).

    图 5  典型飞片/窗口界面粒子速度剖面(A点为碰撞时刻, B点为稀疏波到达窗口界面, C点为弹塑性卸载拐折点, D点为逆相变起始点, E点为卸载过程终点, F点为二次加载起始点, G为相变临界点, H为再加载P2波到达时刻)

    Fig. 5.  Particle velocity of impactor/window interface (A is the impact moment, B is the rarefaction wave arrival time, C is the elastoplastic unloading crutch point, D is the start point of reverse phase transition, E is the ending of unloading, F is the start point of reloading, G is the phase transition point of the reloading process, H is the reloading P2 wave arrival time).

    图 6  相组织及应力波示意图(字母标识与图5同义)

    Fig. 6.  Schematic diagram of phase and strain wave(the letters on the time axis have the same meaning with Fig.5).

    图 7  (a) shot No.1和(b)shot No.2各台阶对应界面粒子速度历史(1—5分别表示台阶编号)

    Fig. 7.  The interface particle velocity history of all stages in (a) shot No.1 and (b)shot No.2 (1–5 is the serial number of each stage).

    图 8  相变特征时间τ取30 ns的模拟结果(字母标识与图5同义)

    Fig. 8.  Simulation of interface velocity with a characteristic time of 30 ns(the letters have the same meaning with Fig.5).

    图 9  实测再加载段速度剖面与数值模拟的比较(字母标识与图5同义)

    Fig. 9.  Comparison of the measured particle velocity and simulation (the letters have the same meaning with Fig.5).

    图 10  二次相变压力与ε相质量分数关系

    Fig. 10.  The relation between reloading phase transition pressure and mass fraction of ε phase.

    表 1  实验材料Hugoniot参数

    Table 1.  Hugoniot parameter of materials.

    材料$ {{\rho }}_{0}/{({\rm{g}} \cdot {\rm{cm}}}^{-3}) $$ {{C}}_{0} $/$ ({\rm{km}} \cdot {\rm{s}}^{-1}) $λ
    Ta16.653.431.19
    Epoxy1.192.731.49
    Fe样品7.863.931.58
    LiF窗口2.645.211.34
    下载: 导出CSV

    表 2  实验各部件名义尺寸

    Table 2.  Gauges of components.

    部件$ {{\rho }}_{0}/\left({{\rm{g}} \cdot {\rm{cm}}}^{-3}\right) $直径
    /mm
    厚度
    /mm
    对应Epoxy
    厚度/mm
    Ta 1号台阶16.655522.2
    Ta 2号台阶16.65152.51.7
    Ta 3号台阶16.65152.81.4
    Ta 4号台阶16.65153.21.0
    Ta 5号台阶16.65153.50.7
    Epoxy1.1955
    Fe样品7.86551.5
    LiF窗口2.645520
    下载: 导出CSV

    表 3  实验shot No.2测量及计算结果

    Table 3.  The data of experiment shot No.2.

    $ {W}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $$ {{u}}_{\mathrm{w},\mathrm{H}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $$ {{u}}_{\mathrm{m}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $$ {{P}}_{\mathrm{m}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ {{p}}_{\mathrm{D}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ {{p}}_{\mathrm{E}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ {\Delta {t}}_{\mathrm{D}\mathrm{E}}/\text{μ}\mathrm{s} $
    Shot No.11475 ± 15986 ± 10489 ± 1017.0 ± 0.111.2 ± 0.410.0 ± 0.20.08
    Shot No.21521 ± 151015 ± 10506 ± 1017.6 ± 0.111.4 ± 0.410.0 ± 0.20.07
    下载: 导出CSV

    表 4  shot No.1和shot No.2各台阶对应卸载尾段残余ε相质量分数及二次加载相变压力

    Table 4.  The mass fraction of ε phase in the end of unloading process and reload phase transition pressure on each stage.

    Shot No.1 Shot No.2
    台阶编号ε相质量
    分数/%
    二次加载相
    变压力/GPa
    ε相质量
    分数/%
    二次加载相
    变压力/GPa
    55211.5 7712.0
    42710.93611.1
    32110.62610.8
    21610.42010.5
    11210.11510.2
    下载: 导出CSV
  • [1]

    Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp53−254, 39−240

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463Google Scholar

    [3]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291Google Scholar

    [4]

    Barker L M, Hollenbach R E 1972 J. Appl. Phys. 43 4669Google Scholar

    [5]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [6]

    Balchan A S, Drickamer H G 1961 Rev. Sci. Instrum. 32 308Google Scholar

    [7]

    Jamison J C, Lawson A W 1962 J. Appl. Phys. 33 776Google Scholar

    [8]

    Takahashi T, Bassett W A 1964 Science 145 483Google Scholar

    [9]

    Clenden R L, Drickamer H G 1964 J. Phys. Chem. Solids 25 865Google Scholar

    [10]

    Jensen B J, GrayⅢ G T, Hixson R S 2009 J. Appl. Phys. 105 103502Google Scholar

    [11]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911Google Scholar

    [12]

    Smith R F, Eggert J H, Swift D C, et al. 2013 J. Appl. Phys. 114 223507Google Scholar

    [13]

    施尚春, 陈攀森, 黄跃 1991 高压物理学报 5 205Google Scholar

    Shi S C, Chen P S, Huang Y 1991 Chin. J. High Pressure Phys. 5 205Google Scholar

    [14]

    Tan H, Weng J D, Wang X Proceedings of the 8th National Conference on Explosion Mechanics Ji’an, China, September 20−25, 2007 p75

    [15]

    谭华 2018 实验冲击波物理 (北京: 国防工业出版社) 第203−218页

    Tan H 2018 Experimental Shock Wave Physics (Vol. 1) (Beijing: National Defense Industry Press) pp3−18

    [16]

    Hayes D B W 1975 J. Appl. Phys. 46 3438Google Scholar

    [17]

    Boettger J C, Wallace D C 1997 1997 Phys. Rev. B 55 2840

    [18]

    种涛, 唐志平, 谭福利, 王桂吉, 赵剑衡 2018 高压物理学报 32 014102

    Chong T, Tang Z P, Tan F L, Wang G J, Zhao J H 2018 Chin. J. High Pressure Phys. 32 014102

    [19]

    Dougherty L M, GrayⅢ G T, Cerreta E K, McCabe R J, Field R D, Bingert J F 2009 Scr. Mater. 60 772Google Scholar

    [20]

    Wang S J, Sui M L, Chen Y T, Lu Q H, M E, Pei X Y, Li Q Z, Hu H B 2013 Sci. Rep. 3 1086Google Scholar

    [21]

    唐志平 2008 冲击相变(北京: 科学出版社) 第87−106页

    Tang Z P 2008 Shock Phase Transiformation (Vol. 1) (Beijing: Higher Education Press) (in Chinese)

  • [1] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [2] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [3] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [4] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法. 物理学报, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [5] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [6] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [8] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究. 物理学报, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [9] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [10] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [11] 张世来, 刘福生, 彭小娟, 张明建, 李永宏, 马小娟, 薛学东. 纳秒尺度金属熔化相变数值模拟及实验验证. 物理学报, 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [12] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟. 物理学报, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [13] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [14] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟. 物理学报, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [15] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [16] 邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦. 冲击加载下孔洞贯通的微观机理研究. 物理学报, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [18] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究. 物理学报, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [19] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
计量
  • 文章访问数:  4204
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-04-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回