搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米液滴撞击柱状固体表面动态行为的分子动力学模拟

潘伶 张昊 林国斌

引用本文:
Citation:

纳米液滴撞击柱状固体表面动态行为的分子动力学模拟

潘伶, 张昊, 林国斌

Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars

Pan Ling, Zhang Hao, Lin Guo-Bin
PDF
HTML
导出引用
  • 液滴撞击固体表面是一种广泛存在于工农业生产中的现象. 随着微纳技术的发展, 纳米液滴撞击行为的定量描述有待完善. 采用分子动力学模拟纳米水滴撞击柱状粗糙铜固体表面的动态行为. 分别在液滴速度为2—15 Å/ps, 五种方柱高度和六种固体表面特征能的情况下分析液滴的动态特征. 结果表明, 随着液滴初始速度V0的增加, 其最终稳定状态先由Cassie态(V0 = 2—3 Å/ps)转变为Wenzel态(V0 = 4—10 Å/ps), 然后再次呈现Cassie态(V0 = 11—13 Å/ps). 当V0 > 13 Å/ps时, 液滴发生弹跳. 液滴最大铺展时间tmaxV0关系曲线中存在拐点, 并针对不同速度区域提出tmaxV0的关系式. 随着方柱高度的增加, 液滴的稳定状态由Wenzel向Cassie态转变, 液滴稳定状态的铺展半径逐渐减小. 固体表面特征能εs的增大使得液滴的铺展能力增强, 液滴铺展后的回缩现象逐渐减弱直至消失.
    Droplets’ impinging on a solid surface is a common phenomenon in industry and agriculture. With the development of micro and nano technology, the quantitative descriptions of impinging behaviors for nanodroplets are expected to be further explored. Molecular dynamics (MD) simulation is adopted to investigate the behaviors of water nanodroplets impinging on cooper surfaces which have been decorated with square nanopillars. The dynamical characteristics of nanodroplets are analyzed at 5 different pillar heights, 6 different surface characteristic energy values, and a wide range of droplet velocities. The results show that there is no obvious difference among the dynamical behaviors for nanodroplets, whose radii are in a range from 35 to 45 Å, impinging on a solid surface. With the increase of droplet velocity, the wetting pattern of steady nanodroplets first transfers from Cassie state (V0 = 2–3 Å/ps) to Wenzel state (V0 = 4–10 Å/ps), then it returns to the Cassie state (V0 = 11–13 Å/ps) again. Nanodroplets bounce off the solid surface when V0 > 13 Å/ps. The relationship between the maximum spreading time and droplet velocity is presented. Inflection points in the curve of the relationship are discovered and their formation mechanism is studied. The spreading factors of steady states for nanodroplets with velocity lower than 9 Å/ps are nearly the same; however, they decrease gradually for nanodroplets with velocity higher than 9 Å/ps. In addition, the increasing height of square nanopillars facilitates the transition from Wenzel state to Cassie state and reduces the spreading radius of steady nanodroplets. The mechanism, which yields Wenzel state when the nanodroplets impinge on solid surface with lower height nanopillars, is investigated. In the spreading stage, spreading radii of nanodroplets impinging on surfaces with different height nanopillars are almost identical. The influence of nanopillar height mainly plays a role in the retraction stage of droplets and it fades away as the height further increases. Moreover, the higher surface characteristic energy benefits the spreading of nanodroplets and reduces the retraction time. Especially, nanodroplets do not experience retraction stage, and the spreading stage is kept until the nanodroplets reach a stable state when the surface characteristic energy is increased to 0.714 kcal/mol. Compared with the spreading factor, the centroid height of nanodroplet is very sensitive to the change of surface characteristic energy.
      通信作者: 潘伶, panling@fzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51875105, 51875106)、福建省产学合作项目(批准号: 2020H6025)和晋江市福大科教园区发展中心科研项目(批准号: 2019-JJFDKY-54)资助的课题
      Corresponding author: Pan Ling, panling@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51875105, 51875106), the Industry-Academy Cooperation Project of Fujian Province (Grant No. 2020H6025), and the Scientific Research Program of the Jinjiang Science and Education Park Development Center Fuzhou University, China (Grant No. 2019-JJFDKY-54).
    [1]

    Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V, Poulikakos D 2012 Nat. Commun. 3 782Google Scholar

    [2]

    Bergeron V, Bonn D, Martin J Y, Vovelle L 2000 Nature 405 772Google Scholar

    [3]

    Zhou Z F, Chen B, Wang R, Wang G X 2017 Exp. Therm. Fluid Sci. 82 189Google Scholar

    [4]

    Chen X L, Li X M, Shao J Y, An N L, Tian H M, Wang C, Han T Y, Wang L, Lu B H 2017 Small 13 1604245Google Scholar

    [5]

    Pan K L, Chou P C, Tseng Y J 2009 Phys. Rev. E 80 036301Google Scholar

    [6]

    Deng X, Mammen L, Butt H, Vollmer D 2012 Science 335 67Google Scholar

    [7]

    Wang N, Xiong D S, Deng Y L, Shi Y, Wang K 2015 ACS. Appl. Mater. Interfaces 7 6260Google Scholar

    [8]

    Peng Y, He Y X, Yang S A, Ben S, Cao M Y, Li K, Liu K, Jiang L 2015 Adv. Funct. Mater. 25 5967Google Scholar

    [9]

    Rioboo R, Tropea C, Marengo M 2001 Atomization Spray. 11 155Google Scholar

    [10]

    施其明, 贾志海, 林琪焱 2016 化工进展 35 3818Google Scholar

    Shi Q M, Jia Z H, Lin Q Y 2016 Chem. Ind. Eng. Prog. 35 3818Google Scholar

    [11]

    彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良 2021 物理学报 70 044701Google Scholar

    Peng J L, Guo H, You T Y, Ji X B, Xu J L 2021 Acta Phys. Sin. 70 044701Google Scholar

    [12]

    顾秦铭, 张朝阳, 周晖, 张凯峰, 徐坤, 朱浩 2020 机械工程学报 56 223Google Scholar

    Gu Q M, Zhang C Y, Zhou H, Zhang K F, Xu K, Zhu H 2020 J. Mech. Eng. 56 223Google Scholar

    [13]

    Qi H C, Wang T Y, Che Z Z 2020 Phys. Rev. E 101 043114Google Scholar

    [14]

    Gao S, Liao Q W, Liu W, Liu Z C 2018 J. Phys. Chem. Lett. 9 13Google Scholar

    [15]

    Gao S, Liao Q W, Liu W, Liu Z C 2017 Langmuir 33 12379Google Scholar

    [16]

    Xie F F, Lv S H, Yang Y R, Wang X D 2020 J. Phys. Chem. Lett. 11 2818Google Scholar

    [17]

    邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东 2013 物理学报 62 120203Google Scholar

    Qiu F, Wang M, Zhou H G, Zheng X, Lin X, Huang W D 2013 Acta Phys. Sin. 62 120203Google Scholar

    [18]

    Liu H Y, Chu F Q, Zhang J, Wen D S 2020 Phys. Rev. Fluids 5 074201Google Scholar

    [19]

    Wang Y B, Wang X D, Yang Y R, Chen M 2019 J. Phys. Chem. C. 123 12841Google Scholar

    [20]

    Yin Z J, Ding Z L, Zhang W F, Su R, Chai F T, Yu P 2020 Comput. Mater. Sci. 183 109814Google Scholar

    [21]

    Zhang M Y, Ma L J, Wang Q, Hao P, Zheng X 2020 Colloids Surf., A 604 125291Google Scholar

    [22]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [23]

    Fu T, Wu N, Lu C, Wang J B, Wang Q L 2019 Mol. Simul. 45 35Google Scholar

    [24]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [25]

    Song F H, Li B Q, Li Y 2015 Phys. Chem. Chem. Phys. 17 5543Google Scholar

    [26]

    Gonzalez-Valle C U, Kumar S, Ramos-Alvarado B 2018 The Journal of Physical Chemistry C 122 7179Google Scholar

    [27]

    Koishi T, Yasuoka K, Zeng X C 2017 Langmuir 33 10184Google Scholar

    [28]

    Cordeiro J, Desai S 2017 ASME J. Micro Nano-Manuf. 5 031008Google Scholar

    [29]

    向恒 2008 博士学位论文 (北京: 清华大学)

    Xiang H 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [30]

    Chen L, Wang S Y, Xiang X, Tao W Q 2020 Comput. Mater. Sci. 171 109223Google Scholar

    [31]

    陈正隆 2007 分子模拟的实践与理论 (北京: 化学工业出版社) 第8页

    Chen Z L 2007 Practice and Theory of Molecular Simulations (Beijing: Chemical Industry Press) p8 (in Chinese)

    [32]

    Bekele S, Evans O G, Tsige M 2020 J. Phys. Chem.C. 124 20109Google Scholar

    [33]

    Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L 1995 J. Chem. Phys. 103 8577

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [35]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266Google Scholar

    [36]

    章佳健 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [37]

    成中军, 杜明, 来华, 张乃庆, 孙克宁 2013 高等学校化学学报 34 606Google Scholar

    Cheng Z J, Du M, Lai H, Zhang N Q, Sun K N 2013 Chem. J. Chin. Univ. 34 606Google Scholar

    [38]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B. 23 074702Google Scholar

    [39]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [40]

    Cassie A B D, Baxter S 1944 Trans. Farad. Soc. 40 546Google Scholar

    [41]

    焦云龙, 刘小君, 刘焜 2016 力学学报 48 353Google Scholar

    Jiao Y L, Liu X J, Liu K 2016 Chin J. Theor. Appl. Mech. 48 353Google Scholar

  • 图 1  模拟体系的初始构型

    Fig. 1.  Initial configuration of the simulation system.

    图 2  液滴右半部分密度云图

    Fig. 2.  Density profile of the right-sided droplet.

    图 3  液滴尺寸对铺展时间t的影响 (a) 液滴在光滑固体表面上; (b) 液滴在柱状固体表面上

    Fig. 3.  Effects of droplets size on spreading time: (a) Droplets on the flat solid surfaces; (b) droplets on the nanopillared solid surfaces.

    图 4  不同速度的液滴撞击柱状固体表面的动态行为

    Fig. 4.  Dynamic behaviors of droplets with various velocities impinging on nanopillared solid surfaces.

    图 5  液滴质心高度h随铺展时间t的变化

    Fig. 5.  Time evolution of central height of droplets with different velocities.

    图 6  最大铺展时间tmax随速度V0的变化

    Fig. 6.  The dependence of the maximum spreading time of droplets on velocities.

    图 7  不同速度液滴的最大铺展状态

    Fig. 7.  The maximum spreading states of droplets with different velocities.

    图 8  不同初始速度的液滴铺展因子β随时间t的变化 (a) V0 = 3—9 Å/ps; (b) V0 = 11—15 Å/ps

    Fig. 8.  Time evolution of spreading factor for droplets with different velocities: (a) V0 = 3−9 Å/ps; (b) V0 = 11−15 Å/ps.

    图 9  不同初始速度液滴的最大铺展因子βmax

    Fig. 9.  The maximum spreading factor of droplets with different velocities.

    图 10  液滴撞击不同方柱高度固体表面的稳定状态

    Fig. 10.  Steady states of droplets impinging on solid surfaces with nanopillars of different height.

    图 11  不同时刻液滴底部z坐标

    Fig. 11.  Time evolution of z coordinates for the bottom of droplets.

    图 12  不同方柱高度对液滴质心高度的影响

    Fig. 12.  Effects of nanopillars with different height on centroid height of droplets.

    图 13  方柱高度对铺展因子的影响

    Fig. 13.  Dependence of spreading factor on the height of nanopillars.

    图 14  方柱高度对铺展半径R的影响

    Fig. 14.  Dependence of spreading radius on the height of nanopillars.

    图 15  液滴撞击不同特征能柱状固体表面的质心高度

    Fig. 15.  Centroid height of droplets impinging on surfaces with different characteristic energy.

    图 16  液滴撞击具有不同特征能方柱表面时的铺展因子

    Fig. 16.  Time evolution of spreading factor of droplets impinging on surfaces with different characteristic energy.

    表 1  液滴撞击柱状固体表面稳定状态时的润湿模式

    Table 1.  Wetting patterns of steady state of droplets impinging on nanopillared solid surfaces.

    V0/(Å·ps–1)2—34—1011—1314—15
    润湿模式CassieWenzelCassie弹跳
    下载: 导出CSV

    表 2  液滴撞击不同高度柱状表面后的稳定态润湿模式

    Table 2.  Wetting patterns of steady state of droplets impinging on surfaces with different height nanopillars.

    方柱
    高度
    H1H2H3H4H5
    10.845 Å14.460 Å18.075 Å21.690 Å25.305 Å
    润湿
    模式
    WenzelWenzelCassieCassieCassie
    下载: 导出CSV

    表 3  不同${\varepsilon _{\rm{s}}}$固体表面对应的${\varepsilon _{{\rm{s \text- o}}}}$及液滴接触角$ \theta $

    Table 3.  Corresponding ${\varepsilon _{{\rm{s \text- o}}}}$ and contact angles of droplets for solid surfaces with different ${\varepsilon _{\rm{s}}}$.

    ${\varepsilon _{\rm{s}}}$/(kcal·mol–1)${\varepsilon _{\rm{s}}}$/(kcal·mol–1)接触角$ \theta $/$ (°) $
    ${\varepsilon _{{\rm{s1}}}} = 0.5{\varepsilon _{{\rm{Cu}}}} = 0.119$0.139125.9
    ${\varepsilon _{{\rm{s2}}}} = 1.5{\varepsilon _{{\rm{Cu}}}} = 0.357$0.24197.1
    ${\varepsilon _{{\rm{s3}}}} = 2.0{\varepsilon _{{\rm{Cu}}}} = 0.476$0.27880
    ${\varepsilon _{{\rm{s4}}}} = 3.0{\varepsilon _{{\rm{Cu}}}} = 0.714$0.34163
    ${\varepsilon _{{\rm{s5}}}} = 4.0{\varepsilon _{{\rm{Cu}}}} = 0.952$0.39445
    ${\varepsilon _{{\rm{s6}}}} = 5.0{\varepsilon _{{\rm{Cu}}}} = 1.190$0.44022
    下载: 导出CSV
  • [1]

    Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V, Poulikakos D 2012 Nat. Commun. 3 782Google Scholar

    [2]

    Bergeron V, Bonn D, Martin J Y, Vovelle L 2000 Nature 405 772Google Scholar

    [3]

    Zhou Z F, Chen B, Wang R, Wang G X 2017 Exp. Therm. Fluid Sci. 82 189Google Scholar

    [4]

    Chen X L, Li X M, Shao J Y, An N L, Tian H M, Wang C, Han T Y, Wang L, Lu B H 2017 Small 13 1604245Google Scholar

    [5]

    Pan K L, Chou P C, Tseng Y J 2009 Phys. Rev. E 80 036301Google Scholar

    [6]

    Deng X, Mammen L, Butt H, Vollmer D 2012 Science 335 67Google Scholar

    [7]

    Wang N, Xiong D S, Deng Y L, Shi Y, Wang K 2015 ACS. Appl. Mater. Interfaces 7 6260Google Scholar

    [8]

    Peng Y, He Y X, Yang S A, Ben S, Cao M Y, Li K, Liu K, Jiang L 2015 Adv. Funct. Mater. 25 5967Google Scholar

    [9]

    Rioboo R, Tropea C, Marengo M 2001 Atomization Spray. 11 155Google Scholar

    [10]

    施其明, 贾志海, 林琪焱 2016 化工进展 35 3818Google Scholar

    Shi Q M, Jia Z H, Lin Q Y 2016 Chem. Ind. Eng. Prog. 35 3818Google Scholar

    [11]

    彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良 2021 物理学报 70 044701Google Scholar

    Peng J L, Guo H, You T Y, Ji X B, Xu J L 2021 Acta Phys. Sin. 70 044701Google Scholar

    [12]

    顾秦铭, 张朝阳, 周晖, 张凯峰, 徐坤, 朱浩 2020 机械工程学报 56 223Google Scholar

    Gu Q M, Zhang C Y, Zhou H, Zhang K F, Xu K, Zhu H 2020 J. Mech. Eng. 56 223Google Scholar

    [13]

    Qi H C, Wang T Y, Che Z Z 2020 Phys. Rev. E 101 043114Google Scholar

    [14]

    Gao S, Liao Q W, Liu W, Liu Z C 2018 J. Phys. Chem. Lett. 9 13Google Scholar

    [15]

    Gao S, Liao Q W, Liu W, Liu Z C 2017 Langmuir 33 12379Google Scholar

    [16]

    Xie F F, Lv S H, Yang Y R, Wang X D 2020 J. Phys. Chem. Lett. 11 2818Google Scholar

    [17]

    邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东 2013 物理学报 62 120203Google Scholar

    Qiu F, Wang M, Zhou H G, Zheng X, Lin X, Huang W D 2013 Acta Phys. Sin. 62 120203Google Scholar

    [18]

    Liu H Y, Chu F Q, Zhang J, Wen D S 2020 Phys. Rev. Fluids 5 074201Google Scholar

    [19]

    Wang Y B, Wang X D, Yang Y R, Chen M 2019 J. Phys. Chem. C. 123 12841Google Scholar

    [20]

    Yin Z J, Ding Z L, Zhang W F, Su R, Chai F T, Yu P 2020 Comput. Mater. Sci. 183 109814Google Scholar

    [21]

    Zhang M Y, Ma L J, Wang Q, Hao P, Zheng X 2020 Colloids Surf., A 604 125291Google Scholar

    [22]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar

    [23]

    Fu T, Wu N, Lu C, Wang J B, Wang Q L 2019 Mol. Simul. 45 35Google Scholar

    [24]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [25]

    Song F H, Li B Q, Li Y 2015 Phys. Chem. Chem. Phys. 17 5543Google Scholar

    [26]

    Gonzalez-Valle C U, Kumar S, Ramos-Alvarado B 2018 The Journal of Physical Chemistry C 122 7179Google Scholar

    [27]

    Koishi T, Yasuoka K, Zeng X C 2017 Langmuir 33 10184Google Scholar

    [28]

    Cordeiro J, Desai S 2017 ASME J. Micro Nano-Manuf. 5 031008Google Scholar

    [29]

    向恒 2008 博士学位论文 (北京: 清华大学)

    Xiang H 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [30]

    Chen L, Wang S Y, Xiang X, Tao W Q 2020 Comput. Mater. Sci. 171 109223Google Scholar

    [31]

    陈正隆 2007 分子模拟的实践与理论 (北京: 化学工业出版社) 第8页

    Chen Z L 2007 Practice and Theory of Molecular Simulations (Beijing: Chemical Industry Press) p8 (in Chinese)

    [32]

    Bekele S, Evans O G, Tsige M 2020 J. Phys. Chem.C. 124 20109Google Scholar

    [33]

    Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L 1995 J. Chem. Phys. 103 8577

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [35]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266Google Scholar

    [36]

    章佳健 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [37]

    成中军, 杜明, 来华, 张乃庆, 孙克宁 2013 高等学校化学学报 34 606Google Scholar

    Cheng Z J, Du M, Lai H, Zhang N Q, Sun K N 2013 Chem. J. Chin. Univ. 34 606Google Scholar

    [38]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B. 23 074702Google Scholar

    [39]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [40]

    Cassie A B D, Baxter S 1944 Trans. Farad. Soc. 40 546Google Scholar

    [41]

    焦云龙, 刘小君, 刘焜 2016 力学学报 48 353Google Scholar

    Jiao Y L, Liu X J, Liu K 2016 Chin J. Theor. Appl. Mech. 48 353Google Scholar

  • [1] 韦昭召. 不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241030
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [4] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [5] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [8] 胡海豹, 何强, 余思潇, 张招柱, 宋东. 低温光滑壁面上水滴撞击结冰行为. 物理学报, 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [9] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [10] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟. 物理学报, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [11] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [12] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [13] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [14] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [15] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [16] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [17] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [18] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [19] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  5671
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-02-07
  • 上网日期:  2021-06-29
  • 刊出日期:  2021-07-05

/

返回文章
返回