搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干涉型红外光谱辐射计仪器线型函数仿真及校正

孙永丰 徐亮 沈先春 王钰豪 徐寒杨 刘文清

引用本文:
Citation:

干涉型红外光谱辐射计仪器线型函数仿真及校正

孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清

Calibration method of instrument line shape for infrared radiometer

Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Wang Yu-Hao, Xu Han-Yang, Liu Wen-Qing
PDF
HTML
导出引用
  • 针对大口径干涉型红外光谱辐射计, 分析了不平行于主光轴的入射光, 对理想仪器线型函数的影响. 本文系统介绍了对仪器线型函数产生影响的截断效应、有限视场效应、离轴效应和离焦效应, 并通过HITRAN数据库对理想的水汽吸收光谱进行仿真, 建立了仪器线型函数误差与光谱畸变的定量关系. 根据仿真结果, 提出了因子权重校正算法. 利用水汽吸收的仿真数据对因子权重校正算法进行验证, 光谱漂移从0.51 cm–1降低到0.01 cm–1以下. 通过自研干涉型红外光谱辐射计对标准黑体的观测实验, 验证因子权重校正算法的准确性, 实测数据的光谱漂移从0.226 cm–1降低到0.012 cm–1, 校正后的光谱数据更为准确.
    Interferometric infrared spectral radiometer has high luminous flux and large passing aperture, so the spectral data collected by the instrument are the convolution of the target spectral data and the instrument line shape (ILS). The main factors affecting the ILS include truncation effect, finite field of view effect, off-axis effect, defocus effect and relative position of detector and so on. In this paper the truncation effect, finite field of view effect, off-axis effect and defocus effect on ILS are expounded. These ILS errors all cause the ideal spectrum to drift towards the low wave number and widen. In this paper, the ideal absorption spectrum of water vapor is simulated by the line-by-line integration, through using MATLAB software and combining with the data of water vapor spectrum in HITRAN database, and the quantitative relationship between the error of instrument linear function and spectral distortion is established. According to the simulation results, a factor weight correction algorithm is proposed. It is believed that with this method, the error spectrum caused by ILS has the same optical properties as the ideal spectrum, but the optical path difference is different. Therefore, the coefficient matrix H can be constructed to establish the quantitative relationship between the error spectrum and the ideal spectrum, and the error spectrum can be corrected by using Landweber iterative algorithm. In this paper, the simulation data of water vapor absorption are used to verify the factor weight correction algorithm, and the spectral drift decreases from 0.51 cm–1 to less than 0.01 cm–1. The accuracy of the factor weight correction algorithm is verified by the experimental observation of the standard black body with self-developed interferometric infrared spectral radiometer. The spectral drift of the measured data decreases from 0.226 cm–1 to 0.012 cm–1, and the corrected spectral data are more accurate.
      通信作者: 徐亮, xuliang@aiofm.ac.cn
    • 基金项目: 中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-DQC016)、安徽省重点研究和开发计划(批准号: 1804d08020300)、国家自然科学基金专项 (批准号: 41941011)和国家重点研发计划(批准号: 2016YFC0201002, 2016YFC0803001-08)资助的课题
      Corresponding author: Xu Liang, xuliang@aiofm.ac.cn
    • Funds: Project supported by the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC016), the Key Research and Development Plan of Anhui Province, China (Grant No. 1804d08020300), the National Natural Science Foundation of China (Grant No. 41941011), and the National Key Research and Development Project, China (Grant Nos. 2016YFC0201002, 2016YFC0803001-08)
    [1]

    刘文清, 陈臻懿, 刘建国, 谢品华, 张天舒, 阚瑞峰, 徐亮 2018 中国环境监测 34 1Google Scholar

    Liu W Q, Chen Z R, Liu J G, Xie P H, Zhang T S, Kan R F, Xu L 2018 Envir. Monitor. China 34 1Google Scholar

    [2]

    Xiao H K, Levine S P, Nowak J, Puskar M, Spear R C 1993 Am. Ind. Hyg. Assoc. J. 54 545Google Scholar

    [3]

    Rehault J, Borrego-Varillas R, Oriana A, Manzoni C, Hauri C P, Helbing J, Cerullo G 2017 Opt. Express 25 4403Google Scholar

    [4]

    徐亮, 刘建国, 高闽光, 陆亦怀, 刘文清, 张天舒, 魏秀丽, 赵雪松, 朱军, 陈华 2007 大气与环境光学学报 2 60Google Scholar

    Xu L, Liu J G, Gao M G, Lu Y H, Liu W Q, Zhang T S, Wei X L, Zhao X S, Zhu J, Chen H 2007 J. Atmosph. Environ. Opt. 2 60Google Scholar

    [5]

    金岭, 徐亮, 高闽光, 童晶晶, 程巳阳, 李相贤 2013 大气与环境光学学报 8 416Google Scholar

    Jin L, Xu L, Gao M G, Dong J J, Cheng S Y, Li X X 2013 J. Atmosph. Environ. Opt. 8 416Google Scholar

    [6]

    Shen X C, Ye S B, Xu L, Hu R, Jin L, Xu H Y, Liu J G, Liu W Q 2018 Appl. Opt. 57 5794Google Scholar

    [7]

    Hase F, Blumenstock T, Paton-Walsh C 1999 Appl. Opt. 38 3417Google Scholar

    [8]

    Wiacek A, Taylor J R, Strong K, Saari R, Kerzenmacher T E, Jones N B, Griffith D W T 2007 J. Atmos. Ocean. Technol. 24 432Google Scholar

    [9]

    Han Y, Revercomb H, Cromp M, et al. 2013 J Geophys. Res. Atmos. 118 12734Google Scholar

    [10]

    张磊, 杨敏珠, 邹曜璞, 韩昌佩 2015 光学精密工程 23 3322Google Scholar

    Zhang L, Yang M Z, Zou Y P, Han C P 2015 Opt. Prec. Eng. 23 3322Google Scholar

    [11]

    Xu L, Wang J, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen 徐H, Liu Z M 2007 J. Atmosph. Environ. Opt. 2 218Google Scholar

    徐亮, 王君, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈华, 刘志明 2007 大气与环境光学学报 2 218Google Scholar

    [12]

    熊伟, 施海亮, 俞能海 2015 光谱学与光谱分析 35 267Google Scholar

    Xiong W, Shi H L, Yu N H 2015 Spectrosc. Spect. Anal. 35 267Google Scholar

    [13]

    Saarinen P, Kauppinen J 1992 Appl. Opt. 31 2353Google Scholar

    [14]

    Salonen K I, Salomaa I K, Kauppinen J K 1995 Appl. Opt. 34 1190Google Scholar

    [15]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 168Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 168Google Scholar

    [16]

    冯明春, 刘文清, 徐亮, 高闽光, 魏秀丽, 童晶晶, 李相贤, 陈军 2015 光学学报 35 0423002Google Scholar

    Feng M C, Liu W Q, Xu L, Gao M G, Wei X L, Tong J J, Li X X, Chen J 2015 Act. Opt. Sini. 35 0423002Google Scholar

    [17]

    Grohs P, Kereta Z, Wiesmann U 2016 Int. J. Wavelets Multiresolut. Inf. Process. 14 1650032Google Scholar

    [18]

    Dicke R H 1953 Phys. Rev. 89 472Google Scholar

    [19]

    Penner S S, Kavanagh R W 1953 J. Opt. Soc. Am. 43 385Google Scholar

    [20]

    He J, Zhang Q G 2013 Optik 124 5245Google Scholar

    [21]

    徐亮, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈华, 刘志明 2008 光谱学与光谱分析 28 1052Google Scholar

    Xu L, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen H, Liu Z M 2008 Spectrosc. Spect. Anal. 28 1052Google Scholar

  • 图 1  波数1555 cm–1和1580 cm–1入射光不同动镜运动距离干涉数据和复原光谱

    Fig. 1.  Wavenumber 1555 cm–1 and 1580 cm–1 interferometric data and reconstructed spectra of different moving distance of incident light.

    图 2  有限视场效应光路示意图

    Fig. 2.  Schematic diagram of finite field-of-view effect light path.

    图 3  离焦效应与离轴效应光路示意图

    Fig. 3.  Diagram of light path of defocus effect and off-axis effect

    图 4  理想光谱与误差光谱权重关系示意图

    Fig. 4.  Diagram of weight relation between ideal spectrum and error spectrum.

    图 5  水汽吸收光谱仿真及校正流程图

    Fig. 5.  Flow chart of water vapor absorption spectrum simulation and correction.

    图 6  (a)水汽透过率谱; (b)包含水汽吸收峰的辐亮度谱

    Fig. 6.  (a) Water vapor transmittance spectrum; (b) radiance spectra containing water vapor absorption peaks.

    图 7  100 ℃时水汽的理想吸收光谱、仪器线型函数误差光谱与校正光谱

    Fig. 7.  Ideal absorption spectra of water vapor at 100 ℃, error spectra of instrument linear function and correction spectra.

    图 8  100 ℃黑体光源不同视场光阑复原光谱图

    Fig. 8.  Resurrected spectrum of 100 ℃ blackbody source with different field of view by diaphragm.

    图 9  100 ℃黑体光源不同视场光阑复原光谱归一化光谱图

    Fig. 9.  Normalized spectral images of 100 ℃ black-body light source with different field of view apertures.

    图 10  波数为1465. 2 $ {\mathrm{c}\mathrm{m}}^{-1} $的水汽吸收峰校正前后对比

    Fig. 10.  Comparison of water vapor absorption peak with wave number of 1465. 2 $ {\mathrm{c}\mathrm{m}}^{-1} $ before and after correction.

    表 1  100 ℃黑体光源孔径光阑为11 mm光谱校正前后波数误差对比

    Table 1.  Comparison of wave number errors before and after spectral correction of 11 mm aperture diaphragm of 100 ℃ blackbody light source.

    Wavenumbers /$ {\mathrm{c}\mathrm{m}}^{-1} $
    Wavenumber
    shift /$ {\mathrm{c}\mathrm{m}}^{-1} $
    Error-reduction value/$ {\mathrm{c}\mathrm{m}}^{-1} $
    Measured spectrumCorrection spectrum
    1430—14400.2420.0180.224
    1460—14700.2150.0080.207
    1572—15820.2170.0100.207
    1650—16600.2310.0120.219
    Average0.2260.0120.214
    下载: 导出CSV
  • [1]

    刘文清, 陈臻懿, 刘建国, 谢品华, 张天舒, 阚瑞峰, 徐亮 2018 中国环境监测 34 1Google Scholar

    Liu W Q, Chen Z R, Liu J G, Xie P H, Zhang T S, Kan R F, Xu L 2018 Envir. Monitor. China 34 1Google Scholar

    [2]

    Xiao H K, Levine S P, Nowak J, Puskar M, Spear R C 1993 Am. Ind. Hyg. Assoc. J. 54 545Google Scholar

    [3]

    Rehault J, Borrego-Varillas R, Oriana A, Manzoni C, Hauri C P, Helbing J, Cerullo G 2017 Opt. Express 25 4403Google Scholar

    [4]

    徐亮, 刘建国, 高闽光, 陆亦怀, 刘文清, 张天舒, 魏秀丽, 赵雪松, 朱军, 陈华 2007 大气与环境光学学报 2 60Google Scholar

    Xu L, Liu J G, Gao M G, Lu Y H, Liu W Q, Zhang T S, Wei X L, Zhao X S, Zhu J, Chen H 2007 J. Atmosph. Environ. Opt. 2 60Google Scholar

    [5]

    金岭, 徐亮, 高闽光, 童晶晶, 程巳阳, 李相贤 2013 大气与环境光学学报 8 416Google Scholar

    Jin L, Xu L, Gao M G, Dong J J, Cheng S Y, Li X X 2013 J. Atmosph. Environ. Opt. 8 416Google Scholar

    [6]

    Shen X C, Ye S B, Xu L, Hu R, Jin L, Xu H Y, Liu J G, Liu W Q 2018 Appl. Opt. 57 5794Google Scholar

    [7]

    Hase F, Blumenstock T, Paton-Walsh C 1999 Appl. Opt. 38 3417Google Scholar

    [8]

    Wiacek A, Taylor J R, Strong K, Saari R, Kerzenmacher T E, Jones N B, Griffith D W T 2007 J. Atmos. Ocean. Technol. 24 432Google Scholar

    [9]

    Han Y, Revercomb H, Cromp M, et al. 2013 J Geophys. Res. Atmos. 118 12734Google Scholar

    [10]

    张磊, 杨敏珠, 邹曜璞, 韩昌佩 2015 光学精密工程 23 3322Google Scholar

    Zhang L, Yang M Z, Zou Y P, Han C P 2015 Opt. Prec. Eng. 23 3322Google Scholar

    [11]

    Xu L, Wang J, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen 徐H, Liu Z M 2007 J. Atmosph. Environ. Opt. 2 218Google Scholar

    徐亮, 王君, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈华, 刘志明 2007 大气与环境光学学报 2 218Google Scholar

    [12]

    熊伟, 施海亮, 俞能海 2015 光谱学与光谱分析 35 267Google Scholar

    Xiong W, Shi H L, Yu N H 2015 Spectrosc. Spect. Anal. 35 267Google Scholar

    [13]

    Saarinen P, Kauppinen J 1992 Appl. Opt. 31 2353Google Scholar

    [14]

    Salonen K I, Salomaa I K, Kauppinen J K 1995 Appl. Opt. 34 1190Google Scholar

    [15]

    冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽 2016 物理学报 65 168Google Scholar

    Feng M C, Xu L, Liu W Q, Liu J G, Gao M G, Wei X L 2016 Acta Phys. Sin. 65 168Google Scholar

    [16]

    冯明春, 刘文清, 徐亮, 高闽光, 魏秀丽, 童晶晶, 李相贤, 陈军 2015 光学学报 35 0423002Google Scholar

    Feng M C, Liu W Q, Xu L, Gao M G, Wei X L, Tong J J, Li X X, Chen J 2015 Act. Opt. Sini. 35 0423002Google Scholar

    [17]

    Grohs P, Kereta Z, Wiesmann U 2016 Int. J. Wavelets Multiresolut. Inf. Process. 14 1650032Google Scholar

    [18]

    Dicke R H 1953 Phys. Rev. 89 472Google Scholar

    [19]

    Penner S S, Kavanagh R W 1953 J. Opt. Soc. Am. 43 385Google Scholar

    [20]

    He J, Zhang Q G 2013 Optik 124 5245Google Scholar

    [21]

    徐亮, 刘建国, 高闽光, 陆亦怀, 刘文清, 魏秀丽, 张天舒, 陈华, 刘志明 2008 光谱学与光谱分析 28 1052Google Scholar

    Xu L, Liu J G, Gao M G, Lu Y H, Liu W Q, Wei X L, Zhang T S, Chen H, Liu Z M 2008 Spectrosc. Spect. Anal. 28 1052Google Scholar

  • [1] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [2] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术. 物理学报, 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [3] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [4] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法. 物理学报, 2021, 70(6): 060701. doi: 10.7498/aps.70.20201530
    [5] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中. 激光外差光谱仪的仪器线型函数研究. 物理学报, 2019, 68(6): 064208. doi: 10.7498/aps.68.20181620
    [6] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [7] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析. 物理学报, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [8] 闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 大气SO2柱总量遥感反演算法比较分析及验证. 物理学报, 2016, 65(8): 084204. doi: 10.7498/aps.65.084204
    [9] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁. 基于Walsh-Hadamard变换的单像素遥感成像. 物理学报, 2016, 65(6): 064201. doi: 10.7498/aps.65.064201
    [10] 李明芮, 黎浩峰, 陈文振, 郝建立. 点堆中子动力学方程组曲率权重法的解. 物理学报, 2015, 64(22): 220201. doi: 10.7498/aps.64.220201
    [11] 陆文, 严卫, 艾未华, 施健康. 星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验. 物理学报, 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [12] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [13] 李一丁, 张鹏飞, 张辉, 于淼. 弯轨Čerenkov辐射计算中的稳相法. 物理学报, 2013, 62(10): 104103. doi: 10.7498/aps.62.104103
    [14] 尹增谦, 武臣, 宫琬钰, 龚之珂, 王永杰. Voigt线型函数及其最大值的研究. 物理学报, 2013, 62(12): 123301. doi: 10.7498/aps.62.123301
    [15] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除. 物理学报, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [16] 顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 多角度偏振遥感相机DPC在轨偏振定标. 物理学报, 2011, 60(7): 070702. doi: 10.7498/aps.60.070702
    [17] 杜华栋, 黄思训, 石汉青. 高光谱分辨率遥感资料通道最优选择方法及试验. 物理学报, 2008, 57(12): 7685-7692. doi: 10.7498/aps.57.7685
    [18] 李 志, 魏恩泊, 田纪伟. 一个L波段海表盐度遥感反演的新经验模式. 物理学报, 2007, 56(5): 3028-3030. doi: 10.7498/aps.56.3028
    [19] 吴云岗, 陶明德. 粘性流体中船行波的完整速度场. 物理学报, 2005, 54(10): 4496-4500. doi: 10.7498/aps.54.4496
    [20] 周晴. 一维二链段晶体红外光谱的格林函数方法. 物理学报, 1984, 33(2): 193-201. doi: 10.7498/aps.33.193
计量
  • 文章访问数:  4879
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-03-15
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-20

/

返回文章
返回