搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响

张翱 张春秀 张春梅 田益民 闫君 孟涛

引用本文:
Citation:

CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响

张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛

Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell

Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao
PDF
HTML
导出引用
  • 采用第一性原理在MP2/aug-cc-PVTZ 水平下优化得到CH3NH3多聚体的几何构型, 发现多聚体中CH3NH3沿C-N轴取向, 多聚体随着CH3NH3数量增加有收缩趋势, 这有利于无机框架的结构稳定, 多聚体的总偶极矩随着CH3NH3数量线性增加, 这导致了CH3NH3PbI3异质结的强极化. CH3NH3多聚体中未配对电子分布在每个CH3NH3的NH3-端, 轨道能量在–4.4—–3.2 eV之间. 计算静电势矢量场发现CH3NH${}_3^+ $具有强亲电性, NH3-端比CH3-端有更强的亲电性, CH3NH3单体和CH3NH3多聚体具有弱亲电性和亲核性, CH3NH3多聚体的形成有效地减少CH3NH3与无机[PbI3]框架之间的非谐振声子振动模式, 这有利于提高CH3NH3PbI3异质结中载流子传输. 电场作用下CH3NH3五聚体中未配对电子通过量子跃迁机制沿着C-N轴发生转移, 施加不同方向电场电子的转移效率是不一样的, 转移电子数量随着电场强度增加而增加, 通过这样的跃迁机制在外电场作用下电子很容易注入CH3NH3PbI3形成CH3NH3多聚体. 这些计算结果将有助于更深刻地理解有机-无机杂化钙钛矿太阳能电池高光电转换效率的根源.
    CH3NH3PbI3 is one of the most promising candidates for high-performance hybrid organic-inorganic perovskite solar cells. The CH3NH3PbI3 single crystal and polycrystalline thin film exhibit the unique features of long carrier lifetimes and diffusion lengths, however, their carrier mobilities are in fact rather modest in a range from 1 cm2·V–1·s–1 to 100 cm2·V–1·s–1. Experimentally, the temperature dependence of mobility is described as T–1.3 to T–1.6 due to the acoustic phonon scattering. To be sure, the rotating CH3NH${}_3^+ $ cations are disadvantageous to the carrier transport and performance for CH3NH3PbI3 solar cells. The effect of the rotating CH3NH${}_3^+ $ cations on high-performance CH3NH3PbI3 solar cells remains an open question. The Gaussian 09 software has been utilized to optimize the geometrical structures of CH3NH3 dimer, trimer, tetramer, and pentamer in isolated state at the MP2 level with using the cc-PVTZ basis set. For CH3NH3 polymer, the mean distance between two centroids of neighboring CH3NH3 decreasing with the number of CH3NH3 is slightly smaller than the lattice constant 6.28 Å of tetragonal CH3NH3PbI3, which is advantageous to structural stability and higher structural order of inorganic [PbI3] framework. It signifies that the long range order of electrically neutral CH3NH3 is easily formed for room-temperature CH3NH3PbI3. The total dipole moment linearly increases with the number of CH3NH3 for CH3NH3 polymer, and attains a large value 19.7 Debye for CH3NH3 pentamer, which may be the origin of strong polarization in CH3NH3PbI3 heterojunction. The molecular orbitals of five unpaired electrons for CH3NH3 pentamer are distributed around NH3-sides of five different CH3NH3 pentamers respectively, and these orbital energies are in a range from –4.4 eV to –3.2 eV. The unpaired electrons in CH3NH3 polymer have an electrostatic attraction on the CH3-side of neighboring CH3NH3, which is the key cause of forming the ordered CH3NH3 polymer. Hence it can be inferred that the orbital energies of unpaired electrons are getting closer when the longer range order of CH3NH3 are formed in room-temperature CH3NH3PbI3 through the interfacial electron injection. The vector field map of electrostatic potential (ESP) shows that CH3NH${}_3^+ $ has strong electrophilic character, and the NH3-side has a stronger electrophilic character than CH3-side, however, CH3NH3 monomer and polymer have weak electrophilic and nucleophilic character. Thus, the forming of CH3NH3 polymer at the CH3NH3PbI3 heterojunction leads the organic and inorganic portions to be decoupled, which can effectively reduce the anharmonic phonon modes. Under an applied electric field, the unpaired electrons in CH3NH3 pentamer can transfer along the C-N axis through the hopping mechanism. According to these results, we can draw three useful conclusions below. i) The electrons under an applied electric field are easily injected into the CH3NH3PbI3 material through the heterojunction, the CH3NH3 polymer is easily formed, and the unpaired electrons in polymer are transferred between two neighboring CH3NH3 through hopping mechanism. ii) The decoupling between organic CH3NH3 and inorganic [PbI3] framework can effectively reduce the anharmonic phonon modes, which can lead the carrier scattering decrease and the efficiency of carrier separation and transport to improve; iii) The ordered CH3NH3 polymer at the CH3NH3PbI3 heterojunction can enhance the order of inorganic [PbI3] framework. Our researches may help to further understand the origin of high power conversion efficiency (PCE) for hybrid organic-inorganic perovskite solar cells.
      通信作者: 孟涛, tmeng@bigc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11605012)、北京市教委科研计划(批准号: KM202010015008)和国家自然科学基金青年科学基金(批准号: 51802014)资助的课题
      Corresponding author: Meng Tao, tmeng@bigc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605012), the Project of Beijing Municipal Education Commission, China (Grant No. KM202010015008), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51802014)
    [1]

    Zhang W, Eperon G E, Snaith H J 2016 Nat. Energy 1 16048Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Ding H, Li B, Zareen S, Li G, Tu Y, Zhang D, Cao X, Xu Q, Yang S, Tait S L, Zhu J 2020 ACS Appl. Mater. Interfaces 12 28861Google Scholar

    [4]

    Breternitz J, Lehmann F, Barnett S A, Nowell H, Schorr S 2020 Angew. Chem. Int. Ed. 59 424Google Scholar

    [5]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [6]

    Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923Google Scholar

    [7]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundströ V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [8]

    Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu Z Y, Podzorov V 2016 Nat. Commun. 7 12253Google Scholar

    [9]

    He J L, Fang W H, Long R, Prezhdo O V 2020 J. Am. Chem. Soc. 142 14664Google Scholar

    [10]

    Li W W, Man Z Y, Zeng J T, Zheng L Y, Li G R, Kassiba A 2020 J. Phys. Chem. C 124 13348Google Scholar

    [11]

    Brenner T M, Egger D A, Rappe A M, Kronik L, Hodes G, Cahen D 2015 J. Phys. Chem. Lett. 6 4754Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [15]

    Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K, Tian Y, Zhu Q, Canton S E, Scheblykin I G, Pullerits T, Yartsev A, Sundstrom V 2014 J. Phys. Chem. Lett. 5 2189Google Scholar

    [16]

    Karakus M, Jensen S A, D’Angelo F, Turchinovich D, Bonn M, Canovas E 2015 J. Phys. Chem. Lett. 6 4991Google Scholar

    [17]

    Oga H, Saeki A, Ogomi Y, Hayase S, Seki S 2014 J. Am. Chem. Soc. 136 13818Google Scholar

    [18]

    He Y, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Wang Y, Zhang Y, Zhang P, Zhang W 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar

    [20]

    Whalley L D, Skelton J M, Frost J M, Walsh A 2016 Phys. Rev. B 94 220301Google Scholar

    [21]

    Monahan D M, Guo L, Lin J, Dou L, Yang P, Fleming G R 2017 J. Phys. Chem. Lett. 8 83211

    [22]

    Ma J, Wang L W 2017 Nano Lett. 17 3646Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Revision C.01) (Wallingford: Gaussian, Inc.)

    [24]

    Murray J S, Brinck T, Lane P, Paulsen K, Politzer P 1994 J. Mol. Struct. Theochem. 307 55Google Scholar

    [25]

    Lefebvre C, Rubez G, Khartabil H, Boisson J C, Contreras-García J, Hénon E 2017 Phys. Chem. Chem. Phys. 19 17928Google Scholar

    [26]

    Belpassi L, Infante I, Tarantelli F, Visscher L 2008 J. Am. Chem. Soc. 130 1048Google Scholar

    [27]

    Zhang A, Chen Y L, Zhang C X, Yan J 2019 Chin. Phys. Lett. 36 026701Google Scholar

    [28]

    张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [29]

    张翱, 张春秀, 陈云琳, 张春梅, 孟涛 2020 物理学报 69 118801Google Scholar

    Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin 69 118801Google Scholar

  • 图 1  在MP2/Aug-cc-PVTZ水平下优化CH3NH3二聚体、三聚体、四聚体、五聚体的邻近两个分子质心之间的平均距离和电偶极矩

    Fig. 1.  Mean distance between two centroids of neighboring molecules and dipole moments for optimized CH3NH3 dimer, trimer, tetramer, and pentamer at MP2/Aug-cc-PVTZ level.

    图 2  在MP2/Aug-cc-PVTZ水平下 (a)优化的CH3NH3多聚体未配对电子的分子轨道能, (b) 优化的CH3NH3五聚体的分子轨道等值面图和轨道能量, 红色和蓝色分别表示正相和负相

    Fig. 2.  (a) The molecular orbital energies of unpaired electrons for optimized CH3NH3 polymer, and (b) the molecular orbitals isosurface map and energies of unpaired electrons of optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. Red and blue colors correspond to positive and negative phases, respectively.

    图 3  在MP2/Aug-cc-PVTZ水平下优化的 (a) CH3NH${}_3^+ $, (b) CH3NH3, (c) CH3NH3五聚体的静电势矢量场图, 蓝色的轮廓线表示范德瓦耳斯表面, 红色的箭头表示对应坐标处的电场

    Fig. 3.  Vector field map of ESP for optimized (a) CH3NH${}_3^+ $, (b) CH3NH3, and (c) CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. The blue contour line and red arrow represent van der Waals surface and electric field at corresponding position, respectively.

    图 4  在MP2/Aug-cc-PVTZ水平下, 在优化的CH3NH3五聚体中通过RDG方法图形化CH3NH3之间的相互作用

    Fig. 4.  Weak interaction between two adjacent CH3NH3 in optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level is visualized by RDG method.

    图 5  (a)优化的CH3NH3几何构型; 施加沿x-轴 (b) 正向和 (c) 负向的不同外电场作用下的电荷位移曲线

    Fig. 5.  (a) Optimized configuration of CH3NH3 pentamer; charge displacement curve under external electric field along the (b) positive and (c) negative x-axis with different strengths of electric field.

  • [1]

    Zhang W, Eperon G E, Snaith H J 2016 Nat. Energy 1 16048Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Ding H, Li B, Zareen S, Li G, Tu Y, Zhang D, Cao X, Xu Q, Yang S, Tait S L, Zhu J 2020 ACS Appl. Mater. Interfaces 12 28861Google Scholar

    [4]

    Breternitz J, Lehmann F, Barnett S A, Nowell H, Schorr S 2020 Angew. Chem. Int. Ed. 59 424Google Scholar

    [5]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [6]

    Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923Google Scholar

    [7]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundströ V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [8]

    Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu Z Y, Podzorov V 2016 Nat. Commun. 7 12253Google Scholar

    [9]

    He J L, Fang W H, Long R, Prezhdo O V 2020 J. Am. Chem. Soc. 142 14664Google Scholar

    [10]

    Li W W, Man Z Y, Zeng J T, Zheng L Y, Li G R, Kassiba A 2020 J. Phys. Chem. C 124 13348Google Scholar

    [11]

    Brenner T M, Egger D A, Rappe A M, Kronik L, Hodes G, Cahen D 2015 J. Phys. Chem. Lett. 6 4754Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [15]

    Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K, Tian Y, Zhu Q, Canton S E, Scheblykin I G, Pullerits T, Yartsev A, Sundstrom V 2014 J. Phys. Chem. Lett. 5 2189Google Scholar

    [16]

    Karakus M, Jensen S A, D’Angelo F, Turchinovich D, Bonn M, Canovas E 2015 J. Phys. Chem. Lett. 6 4991Google Scholar

    [17]

    Oga H, Saeki A, Ogomi Y, Hayase S, Seki S 2014 J. Am. Chem. Soc. 136 13818Google Scholar

    [18]

    He Y, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Wang Y, Zhang Y, Zhang P, Zhang W 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar

    [20]

    Whalley L D, Skelton J M, Frost J M, Walsh A 2016 Phys. Rev. B 94 220301Google Scholar

    [21]

    Monahan D M, Guo L, Lin J, Dou L, Yang P, Fleming G R 2017 J. Phys. Chem. Lett. 8 83211

    [22]

    Ma J, Wang L W 2017 Nano Lett. 17 3646Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Revision C.01) (Wallingford: Gaussian, Inc.)

    [24]

    Murray J S, Brinck T, Lane P, Paulsen K, Politzer P 1994 J. Mol. Struct. Theochem. 307 55Google Scholar

    [25]

    Lefebvre C, Rubez G, Khartabil H, Boisson J C, Contreras-García J, Hénon E 2017 Phys. Chem. Chem. Phys. 19 17928Google Scholar

    [26]

    Belpassi L, Infante I, Tarantelli F, Visscher L 2008 J. Am. Chem. Soc. 130 1048Google Scholar

    [27]

    Zhang A, Chen Y L, Zhang C X, Yan J 2019 Chin. Phys. Lett. 36 026701Google Scholar

    [28]

    张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [29]

    张翱, 张春秀, 陈云琳, 张春梅, 孟涛 2020 物理学报 69 118801Google Scholar

    Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin 69 118801Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [3] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [4] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [10] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [13] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [14] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [15] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [18] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶两相硅薄膜电池的计算机模拟. 物理学报, 2005, 54(7): 3370-3374. doi: 10.7498/aps.54.3370
计量
  • 文章访问数:  4381
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-04-14
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回