Processing math: 100%

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响

张翱 张春秀 张春梅 田益民 闫君 孟涛

张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
引用本文: 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Phys. Sin., 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
Citation: Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Phys. Sin., 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353

CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响

张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛

Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell

Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用第一性原理在MP2/aug-cc-PVTZ 水平下优化得到CH3NH3多聚体的几何构型, 发现多聚体中CH3NH3沿C-N轴取向, 多聚体随着CH3NH3数量增加有收缩趋势, 这有利于无机框架的结构稳定, 多聚体的总偶极矩随着CH3NH3数量线性增加, 这导致了CH3NH3PbI3异质结的强极化. CH3NH3多聚体中未配对电子分布在每个CH3NH3的NH3-端, 轨道能量在–4.4—–3.2 eV之间. 计算静电势矢量场发现CH3NH+3具有强亲电性, NH3-端比CH3-端有更强的亲电性, CH3NH3单体和CH3NH3多聚体具有弱亲电性和亲核性, CH3NH3多聚体的形成有效地减少CH3NH3与无机[PbI3]框架之间的非谐振声子振动模式, 这有利于提高CH3NH3PbI3异质结中载流子传输. 电场作用下CH3NH3五聚体中未配对电子通过量子跃迁机制沿着C-N轴发生转移, 施加不同方向电场电子的转移效率是不一样的, 转移电子数量随着电场强度增加而增加, 通过这样的跃迁机制在外电场作用下电子很容易注入CH3NH3PbI3形成CH3NH3多聚体. 这些计算结果将有助于更深刻地理解有机-无机杂化钙钛矿太阳能电池高光电转换效率的根源.
    CH3NH3PbI3 is one of the most promising candidates for high-performance hybrid organic-inorganic perovskite solar cells. The CH3NH3PbI3 single crystal and polycrystalline thin film exhibit the unique features of long carrier lifetimes and diffusion lengths, however, their carrier mobilities are in fact rather modest in a range from 1 cm2·V–1·s–1 to 100 cm2·V–1·s–1. Experimentally, the temperature dependence of mobility is described as T–1.3 to T–1.6 due to the acoustic phonon scattering. To be sure, the rotating CH3NH+3 cations are disadvantageous to the carrier transport and performance for CH3NH3PbI3 solar cells. The effect of the rotating CH3NH+3 cations on high-performance CH3NH3PbI3 solar cells remains an open question. The Gaussian 09 software has been utilized to optimize the geometrical structures of CH3NH3 dimer, trimer, tetramer, and pentamer in isolated state at the MP2 level with using the cc-PVTZ basis set. For CH3NH3 polymer, the mean distance between two centroids of neighboring CH3NH3 decreasing with the number of CH3NH3 is slightly smaller than the lattice constant 6.28 Å of tetragonal CH3NH3PbI3, which is advantageous to structural stability and higher structural order of inorganic [PbI3] framework. It signifies that the long range order of electrically neutral CH3NH3 is easily formed for room-temperature CH3NH3PbI3. The total dipole moment linearly increases with the number of CH3NH3 for CH3NH3 polymer, and attains a large value 19.7 Debye for CH3NH3 pentamer, which may be the origin of strong polarization in CH3NH3PbI3 heterojunction. The molecular orbitals of five unpaired electrons for CH3NH3 pentamer are distributed around NH3-sides of five different CH3NH3 pentamers respectively, and these orbital energies are in a range from –4.4 eV to –3.2 eV. The unpaired electrons in CH3NH3 polymer have an electrostatic attraction on the CH3-side of neighboring CH3NH3, which is the key cause of forming the ordered CH3NH3 polymer. Hence it can be inferred that the orbital energies of unpaired electrons are getting closer when the longer range order of CH3NH3 are formed in room-temperature CH3NH3PbI3 through the interfacial electron injection. The vector field map of electrostatic potential (ESP) shows that CH3NH+3 has strong electrophilic character, and the NH3-side has a stronger electrophilic character than CH3-side, however, CH3NH3 monomer and polymer have weak electrophilic and nucleophilic character. Thus, the forming of CH3NH3 polymer at the CH3NH3PbI3 heterojunction leads the organic and inorganic portions to be decoupled, which can effectively reduce the anharmonic phonon modes. Under an applied electric field, the unpaired electrons in CH3NH3 pentamer can transfer along the C-N axis through the hopping mechanism. According to these results, we can draw three useful conclusions below. i) The electrons under an applied electric field are easily injected into the CH3NH3PbI3 material through the heterojunction, the CH3NH3 polymer is easily formed, and the unpaired electrons in polymer are transferred between two neighboring CH3NH3 through hopping mechanism. ii) The decoupling between organic CH3NH3 and inorganic [PbI3] framework can effectively reduce the anharmonic phonon modes, which can lead the carrier scattering decrease and the efficiency of carrier separation and transport to improve; iii) The ordered CH3NH3 polymer at the CH3NH3PbI3 heterojunction can enhance the order of inorganic [PbI3] framework. Our researches may help to further understand the origin of high power conversion efficiency (PCE) for hybrid organic-inorganic perovskite solar cells.
      PACS:
      88.40.H-(Solar cells (photovoltaics))
      88.40.hj(Efficiency and performance of solar cells)
      63.20.dk(First-principles theory)
      通信作者: 孟涛, tmeng@bigc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11605012)、北京市教委科研计划(批准号: KM202010015008)和国家自然科学基金青年科学基金(批准号: 51802014)资助的课题
      Corresponding author: Meng Tao, tmeng@bigc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605012), the Project of Beijing Municipal Education Commission, China (Grant No. KM202010015008), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51802014)

    有机-无机杂化钙钛矿(如CH3NH3PbI3, CH3NH3PbI3–xClx等)是一种很有前途的太阳能电池材料, CH3NH3PbI3作为高性能太阳能电池的光吸收层具有优异的光电性能[14]. 单晶和多晶薄膜的CH3NH3PbI3都具有载流子寿命长和扩散长度长的特点[510], 然而它的载流子迁移率却十分适中[11]. 通过几种不同的实验技术测量单晶和多晶的CH3NH3PbI3载流子迁移率范围在1—100 cm2·V–1·s–1之间[12,13], 这比具有相似载流子有效质量的无机Si和GaAs低1—2数量级. 一些实验测量结果显示了CH3NH3PbI3载流子迁移率对温度的依赖是在T –1.3T –1.6范围之间[1417], 这主要是载流子受到声学声子的散射. 然而一些理论计算结果表明, 受到声学声子散射的载流子迁移率可以达到103 cm2·V–1·s–1量级[18,19], 这与实验测量结果是不一致的.

    由于在CH3NH3PbI3中不同原子质量存在巨大差异, 在低频率(0—5 THz)振动源于无机框架[PbI3]的振动模式, 较高频率(8—100 THz)振动是源于有机阳离子CH3NH+3振动模式, CH3NH+3与[PbI3]之间的相互作用介于两个频率之间[20]. 一些研究显示, CH3NH+3在提升CH3NH3PbI3器件的光电性能中起到重要的作用, 通过不同的实验技术发现, 室温CH3NH3PbI3中CH3NH+3的旋转包含了两个主要的相关时间: 快分量300—600 fs和慢分量2—8 ps, 这两个分量分别对应着CH3NH+3的“在圆锥体中摇摆”和“重新取向跳跃”[17,21]. 在理论上考虑CH3NH+3随机旋转条件计算的室温CH3NH3PbI3电子迁移率与实验测量值是符合的[22], 并且它们的变化趋势也是一致的, 这个结果说明了室温CH3NH3PbI3中旋转CH3NH+3的动力学无序性诱导了静电势能波动和无机晶格扭曲, 这是导致CH3NH3PbI3的载流子迁移率适中的主要原因. 因此室温下CH3NH3PbI3材料中的载流子传输过程是由旋转CH3NH+3和无机框架[PbI3]晶格振动的强耦合主导的, 非谐振声子模式源于这种相互作用, 可以确定动力学无序的CH3NH+3对CH3NH3PbI3中的载流子传输和CH3NH3PbI3太阳能电池的光电转化效率是不利的.

    然而, 人们仍旧不清楚CH3NH3PbI3异质结中载流子传输对太阳能电池光伏性能的影响, 以及哪些因素对CH3NH3PbI3太阳能电池高光电转换效率起到积极作用. 本文基于第一性原理计算了CH3NH+3, CH3NH3, CH3NH3多聚体的特性, 形成的CH3NH3多聚体能有效地减少非谐振声子振动对CH3NH3PbI3异质结中载流子的散射, 解释了在外电场作用下电子容易注入CH3NH3PbI3形成CH3NH3多聚体, 这些是CH3NH3PbI3太阳能电池高光电转换效率的重要原因.

    使用高斯09软件[23]在MP2/aug-cc-PVTZ 水平下优化CH3NH3二聚体、三聚体、四聚体、五聚体的几何构型. 分子的静电势(ESP)被广泛用来预测分子、离子亲核和亲电的位点, 正(负)的静电势表示该位置是由核(电子)电荷主导的, 分子的静电势对探究分子间弱相互作用诸如范德瓦耳斯相互作用和静电相互作用具有十分重要的作用. 广义相互作用性质函数(GIPF)能成功地将静电势和范德瓦耳斯表面联系起来[24]. CH3NH3之间的相互作用被认为是非共价相互作用(NCI), 基于电子密度的NCI方法被广泛用来在三维实空间中通过独立梯度模型方式和可视化分子相互作用的区域. 约化密度梯度函数(RDG)方法是一种分析弱相互作用的有效方法[25], 约化密度梯度函数等值面可以显示弱相互作用的区域. 电荷位移曲线(CDC)能够定量描述电荷的转移[26], 对CH3NH3多聚体沿C-N轴施加电场, 研究其电子的转移情况.

    前期工作[2729]研究发现, 在CH3NH3PbI3异质结处由于电子注入很容易形成电中性的CH3NH3. 在MP2/aug-cc-PVTZ 水平下优化CH3NH3多聚体, 优化的几何构型如图1(a)所示, 多聚体中CH3NH3之间是一个NH3-端衔接CH3-端沿C-N轴排列, 这样排列的几何构型最稳定. 图1(b)给出了多聚体中邻近的两个CH3NH3质心之间的平均距离和多聚体的总偶极矩, 可以看出, 平均距离随着CH3NH3数量的增加而减小, 这些平均距离比四方相CH3NH3PbI3的晶格常数6.28 Å略微小一些, CH3NH3之间相互作用具有收缩的趋势, 这种特性对无机框架的结构稳定性和更高的结构序是十分有利的, 说明对于室温CH3NH3PbI3材料中电中性的CH3NH3更容易形成长程序. CH3NH3(3.95D)的偶极矩比CH3NH+3(2.17D)要更大, 因此CH3NH3的C-N轴在外电场作用下也更容易取向, 多聚体总偶极矩随着CH3NH3数量线性增加, CH3NH3五聚体的总偶极矩达到19.7D, 这是CH3NH3PbI3异质结处能够产生强极化的重要原因.

    图 1 在MP2/Aug-cc-PVTZ水平下优化CH3NH3二聚体、三聚体、四聚体、五聚体的邻近两个分子质心之间的平均距离和电偶极矩\r\nFig. 1. Mean distance between two centroids of neighboring molecules and dipole moments for optimized CH3NH3 dimer, trimer, tetramer, and pentamer at MP2/Aug-cc-PVTZ level.
    图 1  在MP2/Aug-cc-PVTZ水平下优化CH3NH3二聚体、三聚体、四聚体、五聚体的邻近两个分子质心之间的平均距离和电偶极矩
    Fig. 1.  Mean distance between two centroids of neighboring molecules and dipole moments for optimized CH3NH3 dimer, trimer, tetramer, and pentamer at MP2/Aug-cc-PVTZ level.

    优化的CH3NH3二聚体、三聚体、四聚体、五聚体中未配对电子的分子轨道能量如图2(a)所示, 可以看出, 在CH3NH3多聚体中未配对电子的能量范围随着CH3NH3数量增加而变大, 而未配对电子之间的能量差随着CH3NH3数量增加而减小. CH3NH3五聚体中五个未配对电子的分子轨道等值面图和轨道能量如图2(b)所示, 五个未配对电子的轨道分布在五个CH3NH3的NH3-端, 它们的轨道能量在–4.4 eV— –3.2 eV之间, 在五聚体外端的能量最高(在最右端), 从右向左能量依次递减(如图2(a)所示), 说明在CH3NH3之间的未配对电子更加稳定, 其他多聚体的未配对电子分布与五聚体的类似. 在CH3NH3多聚体中未配对电子对邻近CH3NH3的CH3-端有静电吸引, 这是形成有序CH3NH3多聚体的主要原因.

    图 2 在MP2/Aug-cc-PVTZ水平下 (a)优化的CH3NH3多聚体未配对电子的分子轨道能, (b) 优化的CH3NH3五聚体的分子轨道等值面图和轨道能量, 红色和蓝色分别表示正相和负相\r\nFig. 2. (a) The molecular orbital energies of unpaired electrons for optimized CH3NH3 polymer, and (b) the molecular orbitals isosurface map and energies of unpaired electrons of optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. Red and blue colors correspond to positive and negative phases, respectively.
    图 2  在MP2/Aug-cc-PVTZ水平下 (a)优化的CH3NH3多聚体未配对电子的分子轨道能, (b) 优化的CH3NH3五聚体的分子轨道等值面图和轨道能量, 红色和蓝色分别表示正相和负相
    Fig. 2.  (a) The molecular orbital energies of unpaired electrons for optimized CH3NH3 polymer, and (b) the molecular orbitals isosurface map and energies of unpaired electrons of optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. Red and blue colors correspond to positive and negative phases, respectively.

    分子的静电势矢量场定义为静电势一阶导数的负值, CH3NH+3单体、CH3NH3单体、CH3NH3五聚体产生的静电势矢量场如图3所示, 其中红色箭头表示电场的方向, 红箭头越多表示在对应坐标处的电场强度越大, 蓝色的轮廓线表示范德瓦耳斯表面. 图3(a)图3(b)显示CH3NH+3比CH3NH3产生的电场更强, 而范德瓦耳斯表面更小, 说明CH3NH+3具有更强的亲电性, 可以看出NH3-端比CH3-端有更强的亲电性, 而CH3NH3在范德瓦耳斯表面外面电场很弱, 说明它具有很弱的亲电性和亲核性. CH3NH3五聚体在范德瓦耳斯表面附近电场强度很小, 到其外面就基本减小为零, 意味着CH3NH3五聚体也具有很弱的亲电性和亲核性, 如图3(c)所示. 这些结果说明了CH3NH+3对碘离子有一个强的静电吸引力, 这导致了四方相的CH3NH3PbI3中无机框架的扭曲; 由于CH3NH3单体和多聚体具有弱的亲电性和亲核性, 使得CH3NH3与无机框架退耦合, 无机框架的扭曲将减小, 这将有效地减少有机部分和无机部分之间非谐振声子的振动模式, 同时也有利于提高CH3NH3PbI3异质结中无机[PbI3]框架的载流子传输效率, 而一般在实验上测量的是本征CH3NH3PbI3材料中的载流子迁移率, 而CH3NH3PbI3异质结中有电子注入时载流子的迁移率在实验上还没有测量.

    图 3 在MP2/Aug-cc-PVTZ水平下优化的 (a) CH3NH${}_3^+ $, (b) CH3NH3, (c) CH3NH3五聚体的静电势矢量场图, 蓝色的轮廓线表示范德瓦耳斯表面, 红色的箭头表示对应坐标处的电场\r\nFig. 3. Vector field map of ESP for optimized (a) CH3NH${}_3^+ $, (b) CH3NH3, and (c) CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. The blue contour line and red arrow represent van der Waals surface and electric field at corresponding position, respectively.
    图 3  在MP2/Aug-cc-PVTZ水平下优化的 (a) CH3NH+3, (b) CH3NH3, (c) CH3NH3五聚体的静电势矢量场图, 蓝色的轮廓线表示范德瓦耳斯表面, 红色的箭头表示对应坐标处的电场
    Fig. 3.  Vector field map of ESP for optimized (a) CH3NH+3, (b) CH3NH3, and (c) CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. The blue contour line and red arrow represent van der Waals surface and electric field at corresponding position, respectively.

    图3(c)中显示两个邻近的CH3NH3之间的电场是很弱的, 可以通过RDG方法图形化定量研究CH3NH3之间的弱相互作用, 如图4所示. 发现两个邻近的CH3NH3之间相互作用属于范德瓦耳斯相互作用, 它们的相互作用还达不到氢键相互作用的强度, 在相互作用区域(绿色区域)的电子密度是很小的, 意味着相邻的CH3NH3之间是比较弱的相互吸引力.

    图 4 在MP2/Aug-cc-PVTZ水平下, 在优化的CH3NH3五聚体中通过RDG方法图形化CH3NH3之间的相互作用\r\nFig. 4. Weak interaction between two adjacent CH3NH3 in optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level is visualized by RDG method.
    图 4  在MP2/Aug-cc-PVTZ水平下, 在优化的CH3NH3五聚体中通过RDG方法图形化CH3NH3之间的相互作用
    Fig. 4.  Weak interaction between two adjacent CH3NH3 in optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level is visualized by RDG method.

    在电场作用下, 在无机笼中电中性的CH3NH3群很容易沿着CH3NH3的C-N轴取向, 在没有电场的情况下对CH3NH3多聚体进行几何结构优化时也容易取向, 这说明沿着C-N轴的几何结构是稳定的, 尽管它们的相互作用比较弱. CH3NH3五聚体中CH3NH3中未配对电子在外加电场作用下沿着C-N轴发生转移, 如图5所示. 分别沿x-轴正向和负向施加电场, 发现转移电子的数量均是随着电场强度增加而增加; 电子转移随着施加电场强度的增强具有非线性特征, 当施加电场达到一定数值后NH3-端的未配对电子发生转移, 电子的转移是通过跃迁机制完成的; 沿x-轴正向施加电场电子的转移效率更高, 从图5可以看出, 在同样的最大电场强度(0.0160 a.u.)作用下, 正向电场可以达到四个未配对电子转移, 而负向电场只能有三个未配对电子转移, 这主要是由CH3NH3的CH3-端和NH3-端的不同特性引起的. 这也导致电子通过异质结注入和退出CH3NH3PbI3材料的速率是不同的, 异质结处注入和退出的电子速率不同极可能与实际器件测量产生 “迟滞现象”是相关联的, 这需要进一步理论和实验的探索.

    图 5 (a)优化的CH3NH3几何构型; 施加沿x-轴 (b) 正向和 (c) 负向的不同外电场作用下的电荷位移曲线\r\nFig. 5. (a) Optimized configuration of CH3NH3 pentamer; charge displacement curve under external electric field along the (b) positive and (c) negative x-axis with different strengths of electric field.
    图 5  (a)优化的CH3NH3几何构型; 施加沿x-轴 (b) 正向和 (c) 负向的不同外电场作用下的电荷位移曲线
    Fig. 5.  (a) Optimized configuration of CH3NH3 pentamer; charge displacement curve under external electric field along the (b) positive and (c) negative x-axis with different strengths of electric field.

    这些计算结果证实, 在外电场作用下异质结处很容易实现电子注入CH3NH3PbI3材料形成电中性的CH3NH3, 形成CH3NH3越多越能有效地减少对无机框架载流子非谐振声子的散射, 这样的物理机理能提高CH3NH3PbI3太阳能电池中载流子的产生和分离, 能极大地提高光电转换效率. 在包含CH3NH3PbI3异质结器件中测量电极化时, 电子注入导致的强电极化, 能达到很大的极化强度; 如果电场反向后, 先前注入的电子会退出来, CH3NH3又变成了CH3NH+3, 这时极化减弱, 因此这样的极化机制与传统电极化材料的极化机制在本质上是不一样. 有机分子间的电子是通过跃迁机制来传输的, 决定电子传输效率高低的两个重要参数是分子重组能和分子间转移积分, 第一性原理计算发现CH3NH3重组能约为200 meV, CH3NH3间转移积分约为70 meV, 这意味着外电场作用下电子很容易在有机离子之间进行跃迁传输.

    采用第一性原理在MP2/aug-cc-PVTZ 水平下优化得到CH3NH3多聚体的几何构型, 发现多聚体中两个相邻CH3NH3的平均距离随着CH3NH3数量的增加而减小, 从而易于形成长程序, 多聚体具有收缩趋势, 对无机框架的结构稳定性是有利的. 多聚体总偶极矩随着CH3NH3数量线性增加导致CH3NH3PbI3异质结处的强极化. CH3NH3多聚体中未配对电子的能量范围随着CH3NH3数量增加而变大, 而能量差随着数量增加而减小, CH3NH3五聚体中五个未配对电子分别分布在五个CH3NH3的NH3-端, 它们的轨道能量在–4.4—–3.2 eV之间. 通过计算静电势矢量场发现CH3NH+3具有强亲电性, NH3-端比CH3-端有更强的亲电性, 而CH3NH3和CH3NH3多聚体具有很弱的亲电性和亲核性, 在范德瓦耳斯表面外面电场强度很小, CH3NH3与无机[PbI3]框架退耦合能有效地减少两者之间的非谐振声子振动模式, 从而减少对载流子传输的散射, 这将有利于提高CH3NH3PbI3异质结中的载流子传输. 通过RDG方法可以图形化CH3NH3之间的互作用, 发现CH3NH3之间是比较弱的范德瓦耳斯相互作用, 因此在外电场作用下无机笼中的CH3NH3也容易取向. 在外电场作用下CH3NH3五聚体中CH3NH3未配对的电子沿着C-N轴发生转移, 转移电子的数量随着电场强度增加而增加, 电子的转移是通过跃迁机制完成的, 并且施加不同方向的电场, 电子的转移效率是不一样的. 这些结果将有助于理解有机-无机杂化钙钛矿太阳能电池高光电转换效率的根源.

    [1]

    Zhang W, Eperon G E, Snaith H J 2016 Nat. Energy 1 16048Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Ding H, Li B, Zareen S, Li G, Tu Y, Zhang D, Cao X, Xu Q, Yang S, Tait S L, Zhu J 2020 ACS Appl. Mater. Interfaces 12 28861Google Scholar

    [4]

    Breternitz J, Lehmann F, Barnett S A, Nowell H, Schorr S 2020 Angew. Chem. Int. Ed. 59 424Google Scholar

    [5]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [6]

    Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923Google Scholar

    [7]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundströ V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [8]

    Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu Z Y, Podzorov V 2016 Nat. Commun. 7 12253Google Scholar

    [9]

    He J L, Fang W H, Long R, Prezhdo O V 2020 J. Am. Chem. Soc. 142 14664Google Scholar

    [10]

    Li W W, Man Z Y, Zeng J T, Zheng L Y, Li G R, Kassiba A 2020 J. Phys. Chem. C 124 13348Google Scholar

    [11]

    Brenner T M, Egger D A, Rappe A M, Kronik L, Hodes G, Cahen D 2015 J. Phys. Chem. Lett. 6 4754Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [15]

    Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K, Tian Y, Zhu Q, Canton S E, Scheblykin I G, Pullerits T, Yartsev A, Sundstrom V 2014 J. Phys. Chem. Lett. 5 2189Google Scholar

    [16]

    Karakus M, Jensen S A, D’Angelo F, Turchinovich D, Bonn M, Canovas E 2015 J. Phys. Chem. Lett. 6 4991Google Scholar

    [17]

    Oga H, Saeki A, Ogomi Y, Hayase S, Seki S 2014 J. Am. Chem. Soc. 136 13818Google Scholar

    [18]

    He Y, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Wang Y, Zhang Y, Zhang P, Zhang W 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar

    [20]

    Whalley L D, Skelton J M, Frost J M, Walsh A 2016 Phys. Rev. B 94 220301Google Scholar

    [21]

    Monahan D M, Guo L, Lin J, Dou L, Yang P, Fleming G R 2017 J. Phys. Chem. Lett. 8 83211

    [22]

    Ma J, Wang L W 2017 Nano Lett. 17 3646Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Revision C.01) (Wallingford: Gaussian, Inc.)

    [24]

    Murray J S, Brinck T, Lane P, Paulsen K, Politzer P 1994 J. Mol. Struct. Theochem. 307 55Google Scholar

    [25]

    Lefebvre C, Rubez G, Khartabil H, Boisson J C, Contreras-García J, Hénon E 2017 Phys. Chem. Chem. Phys. 19 17928Google Scholar

    [26]

    Belpassi L, Infante I, Tarantelli F, Visscher L 2008 J. Am. Chem. Soc. 130 1048Google Scholar

    [27]

    Zhang A, Chen Y L, Zhang C X, Yan J 2019 Chin. Phys. Lett. 36 026701Google Scholar

    [28]

    张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [29]

    张翱, 张春秀, 陈云琳, 张春梅, 孟涛 2020 物理学报 69 118801Google Scholar

    Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin 69 118801Google Scholar

    期刊类型引用(0)

    其他类型引用(1)

  • 图 1  在MP2/Aug-cc-PVTZ水平下优化CH3NH3二聚体、三聚体、四聚体、五聚体的邻近两个分子质心之间的平均距离和电偶极矩

    Fig. 1.  Mean distance between two centroids of neighboring molecules and dipole moments for optimized CH3NH3 dimer, trimer, tetramer, and pentamer at MP2/Aug-cc-PVTZ level.

    图 2  在MP2/Aug-cc-PVTZ水平下 (a)优化的CH3NH3多聚体未配对电子的分子轨道能, (b) 优化的CH3NH3五聚体的分子轨道等值面图和轨道能量, 红色和蓝色分别表示正相和负相

    Fig. 2.  (a) The molecular orbital energies of unpaired electrons for optimized CH3NH3 polymer, and (b) the molecular orbitals isosurface map and energies of unpaired electrons of optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. Red and blue colors correspond to positive and negative phases, respectively.

    图 3  在MP2/Aug-cc-PVTZ水平下优化的 (a) CH3NH+3, (b) CH3NH3, (c) CH3NH3五聚体的静电势矢量场图, 蓝色的轮廓线表示范德瓦耳斯表面, 红色的箭头表示对应坐标处的电场

    Fig. 3.  Vector field map of ESP for optimized (a) CH3NH+3, (b) CH3NH3, and (c) CH3NH3 pentamer at MP2/Aug-cc-PVTZ level. The blue contour line and red arrow represent van der Waals surface and electric field at corresponding position, respectively.

    图 4  在MP2/Aug-cc-PVTZ水平下, 在优化的CH3NH3五聚体中通过RDG方法图形化CH3NH3之间的相互作用

    Fig. 4.  Weak interaction between two adjacent CH3NH3 in optimized CH3NH3 pentamer at MP2/Aug-cc-PVTZ level is visualized by RDG method.

    图 5  (a)优化的CH3NH3几何构型; 施加沿x-轴 (b) 正向和 (c) 负向的不同外电场作用下的电荷位移曲线

    Fig. 5.  (a) Optimized configuration of CH3NH3 pentamer; charge displacement curve under external electric field along the (b) positive and (c) negative x-axis with different strengths of electric field.

  • [1]

    Zhang W, Eperon G E, Snaith H J 2016 Nat. Energy 1 16048Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Ding H, Li B, Zareen S, Li G, Tu Y, Zhang D, Cao X, Xu Q, Yang S, Tait S L, Zhu J 2020 ACS Appl. Mater. Interfaces 12 28861Google Scholar

    [4]

    Breternitz J, Lehmann F, Barnett S A, Nowell H, Schorr S 2020 Angew. Chem. Int. Ed. 59 424Google Scholar

    [5]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [6]

    Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923Google Scholar

    [7]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundströ V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [8]

    Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu Z Y, Podzorov V 2016 Nat. Commun. 7 12253Google Scholar

    [9]

    He J L, Fang W H, Long R, Prezhdo O V 2020 J. Am. Chem. Soc. 142 14664Google Scholar

    [10]

    Li W W, Man Z Y, Zeng J T, Zheng L Y, Li G R, Kassiba A 2020 J. Phys. Chem. C 124 13348Google Scholar

    [11]

    Brenner T M, Egger D A, Rappe A M, Kronik L, Hodes G, Cahen D 2015 J. Phys. Chem. Lett. 6 4754Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [15]

    Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K, Tian Y, Zhu Q, Canton S E, Scheblykin I G, Pullerits T, Yartsev A, Sundstrom V 2014 J. Phys. Chem. Lett. 5 2189Google Scholar

    [16]

    Karakus M, Jensen S A, D’Angelo F, Turchinovich D, Bonn M, Canovas E 2015 J. Phys. Chem. Lett. 6 4991Google Scholar

    [17]

    Oga H, Saeki A, Ogomi Y, Hayase S, Seki S 2014 J. Am. Chem. Soc. 136 13818Google Scholar

    [18]

    He Y, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Wang Y, Zhang Y, Zhang P, Zhang W 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar

    [20]

    Whalley L D, Skelton J M, Frost J M, Walsh A 2016 Phys. Rev. B 94 220301Google Scholar

    [21]

    Monahan D M, Guo L, Lin J, Dou L, Yang P, Fleming G R 2017 J. Phys. Chem. Lett. 8 83211

    [22]

    Ma J, Wang L W 2017 Nano Lett. 17 3646Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Revision C.01) (Wallingford: Gaussian, Inc.)

    [24]

    Murray J S, Brinck T, Lane P, Paulsen K, Politzer P 1994 J. Mol. Struct. Theochem. 307 55Google Scholar

    [25]

    Lefebvre C, Rubez G, Khartabil H, Boisson J C, Contreras-García J, Hénon E 2017 Phys. Chem. Chem. Phys. 19 17928Google Scholar

    [26]

    Belpassi L, Infante I, Tarantelli F, Visscher L 2008 J. Am. Chem. Soc. 130 1048Google Scholar

    [27]

    Zhang A, Chen Y L, Zhang C X, Yan J 2019 Chin. Phys. Lett. 36 026701Google Scholar

    [28]

    张翱, 陈云琳, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhang A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [29]

    张翱, 张春秀, 陈云琳, 张春梅, 孟涛 2020 物理学报 69 118801Google Scholar

    Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin 69 118801Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): 238101. doi: 10.7498/aps.73.20241439
    [3] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [4] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [10] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [13] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [14] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [15] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [18] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶两相硅薄膜电池的计算机模拟. 物理学报, 2005, 54(7): 3370-3374. doi: 10.7498/aps.54.3370
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  5196
  • PDF下载量:  79
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-04-14
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回