搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrCoO2.5材料的超快应变动力学

刘旭 黄昱 毛婧一 陈黎明

引用本文:
Citation:

SrCoO2.5材料的超快应变动力学

刘旭, 黄昱, 毛婧一, 陈黎明

Ultrafast strain dynamics in SrCoO2.5 thin films

Liu Xu, Huang Yu, Mao Jing-Yi, Chen Li-Ming
PDF
HTML
导出引用
  • 光激发引起的物质晶格结构的动态变化是一个复杂的超快动力学过程. 本文利用Thomsen模型与超快X射线衍射模拟相结合, 研究了SrCoO2.5晶格中应力产生和传播的过程, 发现不同厚度的SrCoO2.5样品在受激光照射加热后, 其衍射峰会出现连续位移或分裂的现象, 当样品厚度增大时, 其受到激光的激发会较薄样品更不均匀, 因此厚样品内部应变的产生和传播同样具有不均匀性, 反映出激光激发空间的变化会导致样品热应力特征的改变, 这也是不同厚度样品超快衍射信号存在差异的原因. 本文有助于理解激光诱导的应变的产生与传播, 为研究光激发钴基钙钛矿材料的超快晶格动力学提供了理论分析的依据.
    In order to understand the relationship between the structure of materials and its function, it is necessary to investigate the changes of the transient structure of materials over time. Laser-based plasma X-ray sources are currently widely used in the study of ultrafast structure dynamics in condensed matter due to their miniaturization and ultrahigh spatial-temporal resolution. Strongly correlated transition-metal oxides have attracted enormous attention due to their peculiar properties, among them Co-based oxides has now become one of the most promising candidates for renewable energy applications. With the variation of the oxygen stoichiometry, the physical properties of SrCoO3–x, ferromagnetic metal perovskite SrCoO3 and antiferromagnetic insulator brownmillerite SrCoO2.5 can be reversibly transferred. Besides, the various complex physical properties make SrCoO2.5 quite popular for fundamental research, the development of solid oxide fuel cells, etc. However, the research of its dynamic behavior under transient photo-excitation is still limited. Therefore, it is necessary to study the strain fields of SrCoO2.5 films with different thickness. This report focuses on the structural dynamics of SrCoO2.5 films induced by ultrashort laser pulses. The ultrafast X-ray diffraction simulations exhibit transient changes of Bragg peak positions of the SrCoO2.5 excited by laser. By studying the 40 nm- and 60 nm-thick samples, we observe a continuous shift of the Bragg peak towards lower angels at first and then a backshift until it reaches a new equilibrium. In contrast, the 100 nm-thick SrCoO2.5 film exhibits a transient splitting of Bragg peak into two distinct parts until the initial peak disappears. For further research, we use Thomsen model to simulate the generation and evolution of acoustic deformation of SCO2.5 thin film on a substrate supporting the LaAlO3 film. In the case of the thicker film, we find that an inhomogeneity of temperature distribution will lead its thermal stress characteristics to change, and result in the transient splitting of Bragg peak. We believe that this work is important for analyzing the laser excited ultrafast dynamics of cobalt-based perovskite materials.
      通信作者: 黄昱, huangyu@cigit.ac.cn ; 毛婧一, maojingyi@cigit.ac.cn ; 陈黎明, lmchen@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11805206, 11721404)和中国科学院战略性先导科技专项(批准号: XDB17030500)资助的课题
      Corresponding author: Huang Yu, huangyu@cigit.ac.cn ; Mao Jing-Yi, maojingyi@cigit.ac.cn ; Chen Li-Ming, lmchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805206, 11721404) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17030500)
    [1]

    Friedrich W, Knipping P, Laue M 1912 Acad. Wissen Munich 42 303

    [2]

    Sokolowski-Tinten K, Blome C, et al. 2003 Nature 422 287Google Scholar

    [3]

    Schmising C V K, Bargheer M, Kiel M, Zhavoronkov N, Woerner M, Elsaesser T, Vrejoiu I, Hesse D, Alexe M 2007 Phys. Rev. Lett. 98 257601Google Scholar

    [4]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309Google Scholar

    [5]

    Chen L M, Wang W M, Kando M, et al. 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128Google Scholar

    [6]

    Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Phil. Trans. R. Soc. A 377 2145

    [7]

    Lu W, Nicoul M, Shymanovich U, Brinks F, Afshari M, Tarasevitch A, von der Linde D, Sokolowski-Tinten K 2020 AIP ADV 10 035015Google Scholar

    [8]

    Wen H, Cherukara M J, Holt M V 2019 Annu. Rev. Mater. Res. 49 389Google Scholar

    [9]

    Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar

    [10]

    Weisshaupt J, Juvé V, Holtz M, Woerner M, Elsaesser T 2015 Struct. Dyn. 2 024102Google Scholar

    [11]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65Google Scholar

    [12]

    Lu N, Zhang P, Zhang Q, et al. 2017 Nature 546 124Google Scholar

    [13]

    Ourmazd A, Spence J C H 1987 Nature 329 425Google Scholar

    [14]

    Barbagallo M, Hine N D M, Cooper J F K, et al. 2010 Phys. Rev. B 81 235216Google Scholar

    [15]

    Yakout S M 2021 J. Electron. Mater. 50 1922Google Scholar

    [16]

    Li G D, Zhang H, Meng L X, Sun Z, Chen Z, Huang X Y, Qin Y 2020 Sci. Bull. 65 1650Google Scholar

    [17]

    Lu Q Y, Yildiz B 2016 Nano Lett 16 1186Google Scholar

    [18]

    Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, Lee H N 2013 Nat. Mater. 12 1057Google Scholar

    [19]

    Song J H, Chen Y S, Zhang H R, Han F R, Zhang J, Chen X B, Huang H L, Zhang J, Zhang H, Yan X, Khan T, Qi S J, Yang Z H, Hu F X, Shen B G, Sun J R 2019 Phys. Rev. Mater. 3 045801Google Scholar

    [20]

    Zhang B B, He X, Zhao J L, Yu C, Wen H D, Meng S, Bousquet E, Li Y L, Ge C, Jin K J, Tao Y, Guo H Z 2019 Phys. Rev. B 100 144201Google Scholar

    [21]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776

    [22]

    Hohlfeld J, Wellershoff S S, Güdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237Google Scholar

    [23]

    Thomsen C, Grahn H T, Maris H J, Tauc J 1986 Phys. Rev. B 34 4129Google Scholar

    [24]

    Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Rksi F, Squier J A, Walker B C, Wilson K R, Barty C P J 1999 Nature 398 310Google Scholar

  • 图 1  激光照射样品后(a)电子温度和(b)晶格温度随着穿透深度和时间的演化过程

    Fig. 1.  Evolution of (a) electron temperature and (b) lattice temperature with penetration depth and time after laser irradiation.

    图 2  理论计算的SCO2.5受400 nm激光抽运后静态(a), (b), (c)和动态(d), (e), (f) X射线衍射曲线图, 其中(a), (d)为40 nm样品; (b), (e)为60 nm样品; (c), (f)为100 nm样品. 延迟时间$ \tau =0 $ 之前样品未受激发

    Fig. 2.  (a), (b), (c) Static and (d), (e), (f) dynamical X-ray diffraction simulations of SCO2.5 samples pumped by a 400 nm laser, where panels (a) and (d), (b) and (d), (c) and (e) correspond to the different thickness of 40, 60 and 100 nm samples, respectively. Samples were not excited before delay time of $ \tau =0 $.

    图 3  100 nm厚的SCO2.5在400 nm激光激发下的特定时间延迟的应力传播示意图

    Fig. 3.  Propagation process of the strain wave in a 100 nm SCO2.5 sample under 400 nm laser excitation for selected time delays.

    图 4  40 nm厚的SCO2.5在400 nm激光激发下的特定时间延迟的应力传播示意图

    Fig. 4.  Propagation process of the strain wave in a 40 nm SCO2.5 sample under 400 nm laser excitation for selected time delays.

  • [1]

    Friedrich W, Knipping P, Laue M 1912 Acad. Wissen Munich 42 303

    [2]

    Sokolowski-Tinten K, Blome C, et al. 2003 Nature 422 287Google Scholar

    [3]

    Schmising C V K, Bargheer M, Kiel M, Zhavoronkov N, Woerner M, Elsaesser T, Vrejoiu I, Hesse D, Alexe M 2007 Phys. Rev. Lett. 98 257601Google Scholar

    [4]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309Google Scholar

    [5]

    Chen L M, Wang W M, Kando M, et al. 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128Google Scholar

    [6]

    Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Phil. Trans. R. Soc. A 377 2145

    [7]

    Lu W, Nicoul M, Shymanovich U, Brinks F, Afshari M, Tarasevitch A, von der Linde D, Sokolowski-Tinten K 2020 AIP ADV 10 035015Google Scholar

    [8]

    Wen H, Cherukara M J, Holt M V 2019 Annu. Rev. Mater. Res. 49 389Google Scholar

    [9]

    Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar

    [10]

    Weisshaupt J, Juvé V, Holtz M, Woerner M, Elsaesser T 2015 Struct. Dyn. 2 024102Google Scholar

    [11]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65Google Scholar

    [12]

    Lu N, Zhang P, Zhang Q, et al. 2017 Nature 546 124Google Scholar

    [13]

    Ourmazd A, Spence J C H 1987 Nature 329 425Google Scholar

    [14]

    Barbagallo M, Hine N D M, Cooper J F K, et al. 2010 Phys. Rev. B 81 235216Google Scholar

    [15]

    Yakout S M 2021 J. Electron. Mater. 50 1922Google Scholar

    [16]

    Li G D, Zhang H, Meng L X, Sun Z, Chen Z, Huang X Y, Qin Y 2020 Sci. Bull. 65 1650Google Scholar

    [17]

    Lu Q Y, Yildiz B 2016 Nano Lett 16 1186Google Scholar

    [18]

    Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, Lee H N 2013 Nat. Mater. 12 1057Google Scholar

    [19]

    Song J H, Chen Y S, Zhang H R, Han F R, Zhang J, Chen X B, Huang H L, Zhang J, Zhang H, Yan X, Khan T, Qi S J, Yang Z H, Hu F X, Shen B G, Sun J R 2019 Phys. Rev. Mater. 3 045801Google Scholar

    [20]

    Zhang B B, He X, Zhao J L, Yu C, Wen H D, Meng S, Bousquet E, Li Y L, Ge C, Jin K J, Tao Y, Guo H Z 2019 Phys. Rev. B 100 144201Google Scholar

    [21]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776

    [22]

    Hohlfeld J, Wellershoff S S, Güdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237Google Scholar

    [23]

    Thomsen C, Grahn H T, Maris H J, Tauc J 1986 Phys. Rev. B 34 4129Google Scholar

    [24]

    Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Rksi F, Squier J A, Walker B C, Wilson K R, Barty C P J 1999 Nature 398 310Google Scholar

  • [1] 李昀, 苏桐, 盛立志, 张蕊利, 刘舵, 刘永安, 强鹏飞, 杨向辉, 许泽方. 基于超快激光调制的纳秒脉冲X射线发射源. 物理学报, 2024, 73(4): 040701. doi: 10.7498/aps.73.20231505
    [2] 浦实, 肖博文, 周剑, 周雅瑾. 高能重离子超边缘碰撞中极化光致反应. 物理学报, 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074
    [3] 尚玲玲, 钱轩, 孙天娇, 姬扬. 超快光脉冲照射GaAs晶体产生的干涉环. 物理学报, 2020, 69(21): 214202. doi: 10.7498/aps.69.20201055
    [4] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [5] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射. 物理学报, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [6] 郭鑫, 李明华, 李毅飞, 陶梦泽, 王进光, 李大章, 辛建国, 陈黎明. 利用一维原子链模型研究薄膜瞬态结构变化. 物理学报, 2017, 66(18): 186202. doi: 10.7498/aps.66.186202
    [7] 徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥. La, Nb共掺杂BiFeO3薄膜中的光致应变效应及应力调控. 物理学报, 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [8] 孙云, 王圣来, 顾庆天, 许心光, 丁建旭, 刘文洁, 刘光霞, 朱胜军. 利用高分辨X射线衍射研究磷酸二氢钾晶体晶格应变应力. 物理学报, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [9] 马晨, 张保民, 张立, 马玉峰, 赵维富. 碱性品红光致聚合物薄膜的光致光衍射. 物理学报, 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [10] 王 欢, 姚淑德, 潘尧波, 张国义. 用卢瑟福背散射/沟道技术及高分辨X射线衍射技术分析不同Al和In含量的AlInGaN薄膜的应变. 物理学报, 2007, 56(6): 3350-3354. doi: 10.7498/aps.56.3350
    [11] 丁国庆. 张应变In1-xGaxAsyP1-y/InP材料光致荧光谱温度特性的测试与分析. 物理学报, 1998, 47(9): 1564-1570. doi: 10.7498/aps.47.1564
    [12] 尚小明, 王丛方, 王晶晶, 邹英华, 杨文军, 宋延林, 罗传秋, 陈惠英. 翠绿亚胺碱的超快光克尔和光致吸收效应. 物理学报, 1997, 46(12): 2363-2368. doi: 10.7498/aps.46.2363
    [13] 王玉田, 庄岩, 江德生, 杨小平, 姜晓明, 武家杨, 修立松, 郑文莉. 双势垒超晶格结构的同步辐射及X射线双晶衍射研究. 物理学报, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [14] 李建华, 麦振洪, 崔树范. 应变弛豫InGaAs/GaAs超晶格的X射线双晶衍射及形貌研究. 物理学报, 1993, 42(9): 1485-1490. doi: 10.7498/aps.42.1485
    [15] 周国良, 沈孝良, 盛篪, 蒋维栋, 俞鸣人. GexSi1-x/Si超晶格的X射线小角衍射分析. 物理学报, 1991, 40(1): 56-63. doi: 10.7498/aps.40.56
    [16] 朱南昌, 李润身, 许顺生. 半导体应变超晶格结构与界面的X射线双晶衍射研究. 物理学报, 1991, 40(3): 433-440. doi: 10.7498/aps.40.433
    [17] 田亮光, 朱南昌, 陈京一, 李润身, 许顺生, 周国良. 高完整GexSi1-x/Si应变超晶格的X射线双晶衍射研究. 物理学报, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
    [18] 岳学锋, 邵宗书, 陈焕矗, 王应素. 光致折变晶体全息存贮中的最大衍射效率. 物理学报, 1988, 37(12): 2057-2061. doi: 10.7498/aps.37.2057
    [19] 吴仲康, 王进雄, 张光寅, 刘思敏, 牟崇瀛, 吕永彬, 徐玉恒. LiNbO3:Fe的光致光衍射. 物理学报, 1987, 36(9): 1203-1208. doi: 10.7498/aps.36.1203
    [20] 陈箎. X射线的次级消光. 物理学报, 1965, 21(3): 665-673. doi: 10.7498/aps.21.665
计量
  • 文章访问数:  4328
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-27
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回