-
光激发引起的物质晶格结构的动态变化是一个复杂的超快动力学过程. 本文利用Thomsen模型与超快X射线衍射模拟相结合, 研究了SrCoO2.5晶格中应力产生和传播的过程, 发现不同厚度的SrCoO2.5样品在受激光照射加热后, 其衍射峰会出现连续位移或分裂的现象, 当样品厚度增大时, 其受到激光的激发会较薄样品更不均匀, 因此厚样品内部应变的产生和传播同样具有不均匀性, 反映出激光激发空间的变化会导致样品热应力特征的改变, 这也是不同厚度样品超快衍射信号存在差异的原因. 本文有助于理解激光诱导的应变的产生与传播, 为研究光激发钴基钙钛矿材料的超快晶格动力学提供了理论分析的依据.
In order to understand the relationship between the structure of materials and its function, it is necessary to investigate the changes of the transient structure of materials over time. Laser-based plasma X-ray sources are currently widely used in the study of ultrafast structure dynamics in condensed matter due to their miniaturization and ultrahigh spatial-temporal resolution. Strongly correlated transition-metal oxides have attracted enormous attention due to their peculiar properties, among them Co-based oxides has now become one of the most promising candidates for renewable energy applications. With the variation of the oxygen stoichiometry, the physical properties of SrCoO3–x, ferromagnetic metal perovskite SrCoO3 and antiferromagnetic insulator brownmillerite SrCoO2.5 can be reversibly transferred. Besides, the various complex physical properties make SrCoO2.5 quite popular for fundamental research, the development of solid oxide fuel cells, etc. However, the research of its dynamic behavior under transient photo-excitation is still limited. Therefore, it is necessary to study the strain fields of SrCoO2.5 films with different thickness. This report focuses on the structural dynamics of SrCoO2.5 films induced by ultrashort laser pulses. The ultrafast X-ray diffraction simulations exhibit transient changes of Bragg peak positions of the SrCoO2.5 excited by laser. By studying the 40 nm- and 60 nm-thick samples, we observe a continuous shift of the Bragg peak towards lower angels at first and then a backshift until it reaches a new equilibrium. In contrast, the 100 nm-thick SrCoO2.5 film exhibits a transient splitting of Bragg peak into two distinct parts until the initial peak disappears. For further research, we use Thomsen model to simulate the generation and evolution of acoustic deformation of SCO2.5 thin film on a substrate supporting the LaAlO3 film. In the case of the thicker film, we find that an inhomogeneity of temperature distribution will lead its thermal stress characteristics to change, and result in the transient splitting of Bragg peak. We believe that this work is important for analyzing the laser excited ultrafast dynamics of cobalt-based perovskite materials. -
Keywords:
- Thomsen model /
- ultrafast X-ray diffraction /
- photo-induced strain
[1] Friedrich W, Knipping P, Laue M 1912 Acad. Wissen Munich 42 303
[2] Sokolowski-Tinten K, Blome C, et al. 2003 Nature 422 287Google Scholar
[3] Schmising C V K, Bargheer M, Kiel M, Zhavoronkov N, Woerner M, Elsaesser T, Vrejoiu I, Hesse D, Alexe M 2007 Phys. Rev. Lett. 98 257601Google Scholar
[4] Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309Google Scholar
[5] Chen L M, Wang W M, Kando M, et al. 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128Google Scholar
[6] Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Phil. Trans. R. Soc. A 377 2145
[7] Lu W, Nicoul M, Shymanovich U, Brinks F, Afshari M, Tarasevitch A, von der Linde D, Sokolowski-Tinten K 2020 AIP ADV 10 035015Google Scholar
[8] Wen H, Cherukara M J, Holt M V 2019 Annu. Rev. Mater. Res. 49 389Google Scholar
[9] Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar
[10] Weisshaupt J, Juvé V, Holtz M, Woerner M, Elsaesser T 2015 Struct. Dyn. 2 024102Google Scholar
[11] Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65Google Scholar
[12] Lu N, Zhang P, Zhang Q, et al. 2017 Nature 546 124Google Scholar
[13] Ourmazd A, Spence J C H 1987 Nature 329 425Google Scholar
[14] Barbagallo M, Hine N D M, Cooper J F K, et al. 2010 Phys. Rev. B 81 235216Google Scholar
[15] Yakout S M 2021 J. Electron. Mater. 50 1922Google Scholar
[16] Li G D, Zhang H, Meng L X, Sun Z, Chen Z, Huang X Y, Qin Y 2020 Sci. Bull. 65 1650Google Scholar
[17] Lu Q Y, Yildiz B 2016 Nano Lett 16 1186Google Scholar
[18] Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, Lee H N 2013 Nat. Mater. 12 1057Google Scholar
[19] Song J H, Chen Y S, Zhang H R, Han F R, Zhang J, Chen X B, Huang H L, Zhang J, Zhang H, Yan X, Khan T, Qi S J, Yang Z H, Hu F X, Shen B G, Sun J R 2019 Phys. Rev. Mater. 3 045801Google Scholar
[20] Zhang B B, He X, Zhao J L, Yu C, Wen H D, Meng S, Bousquet E, Li Y L, Ge C, Jin K J, Tao Y, Guo H Z 2019 Phys. Rev. B 100 144201Google Scholar
[21] Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776
[22] Hohlfeld J, Wellershoff S S, Güdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237Google Scholar
[23] Thomsen C, Grahn H T, Maris H J, Tauc J 1986 Phys. Rev. B 34 4129Google Scholar
[24] Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Rksi F, Squier J A, Walker B C, Wilson K R, Barty C P J 1999 Nature 398 310Google Scholar
-
图 2 理论计算的SCO2.5受400 nm激光抽运后静态(a), (b), (c)和动态(d), (e), (f) X射线衍射曲线图, 其中(a), (d)为40 nm样品; (b), (e)为60 nm样品; (c), (f)为100 nm样品. 延迟时间
$ \tau =0 $ 之前样品未受激发Fig. 2. (a), (b), (c) Static and (d), (e), (f) dynamical X-ray diffraction simulations of SCO2.5 samples pumped by a 400 nm laser, where panels (a) and (d), (b) and (d), (c) and (e) correspond to the different thickness of 40, 60 and 100 nm samples, respectively. Samples were not excited before delay time of
$ \tau =0 $ . -
[1] Friedrich W, Knipping P, Laue M 1912 Acad. Wissen Munich 42 303
[2] Sokolowski-Tinten K, Blome C, et al. 2003 Nature 422 287Google Scholar
[3] Schmising C V K, Bargheer M, Kiel M, Zhavoronkov N, Woerner M, Elsaesser T, Vrejoiu I, Hesse D, Alexe M 2007 Phys. Rev. Lett. 98 257601Google Scholar
[4] Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309Google Scholar
[5] Chen L M, Wang W M, Kando M, et al. 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128Google Scholar
[6] Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Phil. Trans. R. Soc. A 377 2145
[7] Lu W, Nicoul M, Shymanovich U, Brinks F, Afshari M, Tarasevitch A, von der Linde D, Sokolowski-Tinten K 2020 AIP ADV 10 035015Google Scholar
[8] Wen H, Cherukara M J, Holt M V 2019 Annu. Rev. Mater. Res. 49 389Google Scholar
[9] Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar
[10] Weisshaupt J, Juvé V, Holtz M, Woerner M, Elsaesser T 2015 Struct. Dyn. 2 024102Google Scholar
[11] Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65Google Scholar
[12] Lu N, Zhang P, Zhang Q, et al. 2017 Nature 546 124Google Scholar
[13] Ourmazd A, Spence J C H 1987 Nature 329 425Google Scholar
[14] Barbagallo M, Hine N D M, Cooper J F K, et al. 2010 Phys. Rev. B 81 235216Google Scholar
[15] Yakout S M 2021 J. Electron. Mater. 50 1922Google Scholar
[16] Li G D, Zhang H, Meng L X, Sun Z, Chen Z, Huang X Y, Qin Y 2020 Sci. Bull. 65 1650Google Scholar
[17] Lu Q Y, Yildiz B 2016 Nano Lett 16 1186Google Scholar
[18] Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, Lee H N 2013 Nat. Mater. 12 1057Google Scholar
[19] Song J H, Chen Y S, Zhang H R, Han F R, Zhang J, Chen X B, Huang H L, Zhang J, Zhang H, Yan X, Khan T, Qi S J, Yang Z H, Hu F X, Shen B G, Sun J R 2019 Phys. Rev. Mater. 3 045801Google Scholar
[20] Zhang B B, He X, Zhao J L, Yu C, Wen H D, Meng S, Bousquet E, Li Y L, Ge C, Jin K J, Tao Y, Guo H Z 2019 Phys. Rev. B 100 144201Google Scholar
[21] Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776
[22] Hohlfeld J, Wellershoff S S, Güdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237Google Scholar
[23] Thomsen C, Grahn H T, Maris H J, Tauc J 1986 Phys. Rev. B 34 4129Google Scholar
[24] Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Rksi F, Squier J A, Walker B C, Wilson K R, Barty C P J 1999 Nature 398 310Google Scholar
计量
- 文章访问数: 4209
- PDF下载量: 76
- 被引次数: 0