搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子层沉积的超薄InN强化量子点太阳能电池的界面输运

李晔 王茜茜 卫会云 仇鹏 何荧峰 宋祎萌 段彰 申诚涛 彭铭曾 郑新和

引用本文:
Citation:

原子层沉积的超薄InN强化量子点太阳能电池的界面输运

李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和

Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition

Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
导出引用
  • 量子点敏化太阳能电池具有重要的潜在应用, 但仍存在界面输运、稳定性和效率改善的挑战. 本文采用等离子增强原子层沉积技术在低温下(170—230 ℃)制备了InN, 并将其插入至CdSeTe基量子点太阳能电池光阳极的FTO/TiO2界面处, 进行了原子层沉积窗口和电池性能改善的物理机理研究. 结果表明, 引入InN 超薄层后的电池效率整体有明显提升, 并且促进了电子的输运, 填充因子明显增加. 同时, 加速了电子抽取、转移和分离, 降低了电荷复合的可能性. 对插入的InN沉积温度和厚度对电池性能的影响进行了深入分析, 并对背后的物理机理进行了讨论.
    Quantum dot-sensitized solar cells have gained rapid development which could produce potential applications. Although they have a theoretical photoelectric conversion efficiency of 44%, there is still a considerable gap in comparison with corresponding practical solar cells, which is mainly due to the fact that the interface transfer, stability and efficiency improvement are still facing some problems. In particular, the carrier recombination loss at the cell interface seriously hinders the quantum dot-sensitized solar cells from developing. In this work, an ultra-thin layer of InN prepared by plasma-enhanced atomic layer deposition is inserted into the FTO/TiO2 interface of the photoanode of CdSeTe based quantum dot-sensitized solar cells to improve the performance of the photoanode structure, and physical mechanism behind the device is discussed. We first investigate the effects of different deposition temperatures (170, 200 and 230 ℃) on the cell performance of InN films. While the InN ultra-thin layer is deposited at 200 ℃, an enhancement of 16.9% in conversion efficiency is achieved as compared with the reference group. Then, the effects of different thickness (5, 10, and 15 cycles) on the cell are investigated at a fixed deposition temperature of 200 ℃. Additionally, an improvement of fill factor for the device after an introduction of InN layer is observed. This enhancement is further convinced by an apparent reduction of series resistance extracted by the Nyquist curve. The significant increase in fill factor indicates that the introduction of InN accelerates the extraction, transfer and separation of electrons, and reduces the possibility of photon-generated carriers recombination. However, the insertion of InN deposition temperature and thickness have a certain range of enhancement in the cell performance, and further investigation of the mechanism will be carried out.
      通信作者: 郑新和, xinhezheng@ustb.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0703700)、国家自然科学基金青年基金(批准号: 52002021)和中央高校基本科研业务费(批准号: FRF-TP-20-016A2)资助的课题
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Fund for the Central Universities, China (Grant No. FRF-TP-20-016A2)
    [1]

    Tian J, Cao G 2013 Nano Rev. 4 22578Google Scholar

    [2]

    Beard M C, Luther J M, Semonin O E, Nozik A J 2013 Acc. Chem. Res. 46 1252Google Scholar

    [3]

    Gopi C V V M, Singh S, Reddy A E, Kim H J 2018 ACS Appl. Mater. Interfaces 10 10036Google Scholar

    [4]

    Wei H, Wang G, Wu H, Luo Y, Li D, Meng Q 2016 Acta Phys. Chim. Sin. 32 201Google Scholar

    [5]

    Jalali-Moghadam E, Shariatinia Z 2018 Appl. Surf. Sci. 441 1Google Scholar

    [6]

    Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X 2018 Chem. Soc. Rev. 47 7659Google Scholar

    [7]

    Jo I, Lee Y, Kim H, Ahn K 2021 J. Alloys Compd. 870 159527Google Scholar

    [8]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962Google Scholar

    [9]

    Wang G, Wei H, Shi J, Xu Y, Wu H, Luo Y, Li D, Meng Q 2017 Nano Energy 35 17Google Scholar

    [10]

    Wang W, Feng W, Du J, Xue W, Zhang L, Zhao L, Li Y, Zhong X 2018 Adv. Mater. 30 1705746Google Scholar

    [11]

    Wei H, Li D, Zheng X, Meng Q 2018 Chin. Phys. B 27 018808Google Scholar

    [12]

    Wei H, Wang G, Shi J, Wu H, Luo Y, Li D, Meng Q 2016 J. Mater. Chem. A 4 14194Google Scholar

    [13]

    Song H, Lin Y, Zhang Z, Rao H, Wang W, Fang Y, Pan Z, Zhong X 2021 J. Am. Chem. Soc. 143 4790Google Scholar

    [14]

    Liu Z, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z, Sunahara K, Furube A 2010 Appl. Phys. Lett. 96 233107Google Scholar

    [15]

    Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K, Grätzel M 2008 Thin Solid Films 516 4613Google Scholar

    [16]

    Hart J N, Menzies D, Cheng Y B, Simon G P, Spiccia L 2006 C.R. Chim. 9 622Google Scholar

    [17]

    Martinson A B F, Elam J W, Hupp J T, Pellin M J 2007 Nano Lett. 7 2183Google Scholar

    [18]

    Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L 2014 Appl. Phys. Express 7 052301Google Scholar

    [19]

    Brennan T P, Tanskanen J T, Roelofs K E, To J W F, Nguyen W H, Bakke J R, Ding I K, Hardin B E, Sellinger A, McGehee M D, Bent S F 2013 J. Phys. Chem. B 117 24138Google Scholar

    [20]

    Flack T J, Pushpakaran B N, Bayne S B 2016 J. Electron. Mater. 45 2673Google Scholar

    [21]

    Florian C, Cignani R, Santarelli A, Filicori F, Longo F, Ieee 2013 IEEE Mtt-S International Microwave Symposium Digest Seattle, WA, USA, June 2–7, 2013 p14021954

    [22]

    Wei H, Qiu P, Peng M, Wu Q, Liu S, An Y, He Y, Song Y, Zheng X 2019 Appl. Surf. Sci. 476 608Google Scholar

    [23]

    Liu H, Wang X, Chen Z, Zheng X, Wang P, Sheng B, Wang T, Rong X, Li M, Zhang J, Yang X, Xu F, Ge W, Shen B 2018 Appl. Phys. Lett. 112 162102Google Scholar

    [24]

    Polyakov V M, Schwierz F 2006 Appl. Phys. Lett. 88 032101Google Scholar

    [25]

    Haider A, Kizir S, Biyikli N 2016 AIP Adv. 6 045203Google Scholar

    [26]

    白一鸣, 陈诺夫, 戴松元, 姚建曦. 2014 太阳电池物理基础 (北京: 机械工业出版社) 第108页

    Bai Y M, Chen N F, Dai S Y, Yao J X 2014 Physical Fundamentals of Solar Cells (Beijing: Mechanical Industry Press) p108 (in Chinese)

    [27]

    Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S 2006 J. Phys. Chem. B 110 13872Google Scholar

    [28]

    Bard A, Faulkner L 2000 Electrochemical Methods: Fundamentals and Applications (2nd Ed.) (New York: John Wiley & Sons) pp580−650

    [29]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215Google Scholar

    [30]

    An Y, He Y, Wei H, Liu S, Li M, Song Y, Qiu P, Rehman A, Zheng X, Peng M 2019 Results Phys. 12 804Google Scholar

    [31]

    Singh T, Lehnen T, Leuning T, Sahu D, Mathur S 2014 Appl. Surf. Sci. 289 27Google Scholar

    [32]

    Chang Y, Lu Y, Hong Y, Kuo C, Gwo S, Yeh J 2010 J. Appl. Phys. 107 043710Google Scholar

  • 图 1  CdSeTe QDs的(a) TEM图、(b) HRTEM图和(c) 稳态PL图

    Fig. 1.  (a) TEM image, (b) HRTEM image, and (c) steady-state PL image of CdSeTe quantum dots.

    图 2  (a) QDSCs 的光阳极结构示意图; (b) 光阳极 SEM 截面图; (c) 基于不同InN沉积温度的QDSCs的J-V测试曲线

    Fig. 2.  (a) Diagram of photoanode structure of QDSCs; (b) SEM cross section of photoanode; (c) J-V test curves of QDSCs based on different InN deposition temperatures.

    图 3  (a) 基于不同InN厚度的QDSCs的J -V曲线; (b) 基于不同厚度InN的QDSCs的量子效率; (c) 基于不同厚度InN的QDSCs的暗态Nyquist曲线; (d)基于不同厚度InN的QDSCs的Bode曲线

    Fig. 3.  (a) J -V curves of QDSCs based on different InN thickness; (b) quantum efficiency of QDSCs based on different thickness of InN; (c) Nyquist curves of QDSCs based on different thicknesses of InN; (d) Bode curves of QDSCs based on different thicknesses of InN.

    图 4  (a) 200 ℃, 10 cycles InN的吸收率; (b) InN-TiO2的能带结构示意图

    Fig. 4.  (a) Absorptance of 200 ℃, 10 cycles InN; (b) schematic diagram of the band structure of InN-TiO2.

    表 1  不同温度下生长的InN超薄层的电池的J -V测试参数

    Table 1.  J -V test parameters of InN ultra-thin layer batteries grown at different temperatures.

    SamplesJsc/(mA·cm–2)Voc/VFF/%η/%
    Reference13.280.5662.374.68
    InN-170 ℃13.330.5867.985.23
    InN-200 ℃14.430.5869.985.47
    InN-230 ℃13.590.5766.554.68
    下载: 导出CSV

    表 2  不同厚度的InN太阳能电池的J -V 测试参数

    Table 2.  J -V test parameters of InN solar cells with different thicknesses.

    SamplesJsc/(mA·cm–2)Voc/VFF/%η/%
    Reference13.280.5662.374.68
    5 cycles14.410.5862.485.18
    10 cycles14.430.5869.985.47
    15 cycles14.290.5560.854.77
    下载: 导出CSV

    表 3  不同厚度的InN太阳能电池的QE测试参数

    Table 3.  QE test parameters of InN solar cells with different thicknesses.

    SamplesQE/%
    Reference33.61
    5 cycles42.20
    10 cycles47.78
    15 cycles40.76
    下载: 导出CSV

    表 4  EIS 拟合结果和载流子寿命

    Table 4.  EIS fitting results and carrier lifetime.

    SamplesRsRct-TiO2/Ω·cm–2τn/%
    Reference18.29283.5159.2
    5 cycles16.92274193.0
    10 cycles17.68188.2283.3
    15 cycles18.82221163.6
    下载: 导出CSV
  • [1]

    Tian J, Cao G 2013 Nano Rev. 4 22578Google Scholar

    [2]

    Beard M C, Luther J M, Semonin O E, Nozik A J 2013 Acc. Chem. Res. 46 1252Google Scholar

    [3]

    Gopi C V V M, Singh S, Reddy A E, Kim H J 2018 ACS Appl. Mater. Interfaces 10 10036Google Scholar

    [4]

    Wei H, Wang G, Wu H, Luo Y, Li D, Meng Q 2016 Acta Phys. Chim. Sin. 32 201Google Scholar

    [5]

    Jalali-Moghadam E, Shariatinia Z 2018 Appl. Surf. Sci. 441 1Google Scholar

    [6]

    Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X 2018 Chem. Soc. Rev. 47 7659Google Scholar

    [7]

    Jo I, Lee Y, Kim H, Ahn K 2021 J. Alloys Compd. 870 159527Google Scholar

    [8]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962Google Scholar

    [9]

    Wang G, Wei H, Shi J, Xu Y, Wu H, Luo Y, Li D, Meng Q 2017 Nano Energy 35 17Google Scholar

    [10]

    Wang W, Feng W, Du J, Xue W, Zhang L, Zhao L, Li Y, Zhong X 2018 Adv. Mater. 30 1705746Google Scholar

    [11]

    Wei H, Li D, Zheng X, Meng Q 2018 Chin. Phys. B 27 018808Google Scholar

    [12]

    Wei H, Wang G, Shi J, Wu H, Luo Y, Li D, Meng Q 2016 J. Mater. Chem. A 4 14194Google Scholar

    [13]

    Song H, Lin Y, Zhang Z, Rao H, Wang W, Fang Y, Pan Z, Zhong X 2021 J. Am. Chem. Soc. 143 4790Google Scholar

    [14]

    Liu Z, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z, Sunahara K, Furube A 2010 Appl. Phys. Lett. 96 233107Google Scholar

    [15]

    Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K, Grätzel M 2008 Thin Solid Films 516 4613Google Scholar

    [16]

    Hart J N, Menzies D, Cheng Y B, Simon G P, Spiccia L 2006 C.R. Chim. 9 622Google Scholar

    [17]

    Martinson A B F, Elam J W, Hupp J T, Pellin M J 2007 Nano Lett. 7 2183Google Scholar

    [18]

    Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L 2014 Appl. Phys. Express 7 052301Google Scholar

    [19]

    Brennan T P, Tanskanen J T, Roelofs K E, To J W F, Nguyen W H, Bakke J R, Ding I K, Hardin B E, Sellinger A, McGehee M D, Bent S F 2013 J. Phys. Chem. B 117 24138Google Scholar

    [20]

    Flack T J, Pushpakaran B N, Bayne S B 2016 J. Electron. Mater. 45 2673Google Scholar

    [21]

    Florian C, Cignani R, Santarelli A, Filicori F, Longo F, Ieee 2013 IEEE Mtt-S International Microwave Symposium Digest Seattle, WA, USA, June 2–7, 2013 p14021954

    [22]

    Wei H, Qiu P, Peng M, Wu Q, Liu S, An Y, He Y, Song Y, Zheng X 2019 Appl. Surf. Sci. 476 608Google Scholar

    [23]

    Liu H, Wang X, Chen Z, Zheng X, Wang P, Sheng B, Wang T, Rong X, Li M, Zhang J, Yang X, Xu F, Ge W, Shen B 2018 Appl. Phys. Lett. 112 162102Google Scholar

    [24]

    Polyakov V M, Schwierz F 2006 Appl. Phys. Lett. 88 032101Google Scholar

    [25]

    Haider A, Kizir S, Biyikli N 2016 AIP Adv. 6 045203Google Scholar

    [26]

    白一鸣, 陈诺夫, 戴松元, 姚建曦. 2014 太阳电池物理基础 (北京: 机械工业出版社) 第108页

    Bai Y M, Chen N F, Dai S Y, Yao J X 2014 Physical Fundamentals of Solar Cells (Beijing: Mechanical Industry Press) p108 (in Chinese)

    [27]

    Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S 2006 J. Phys. Chem. B 110 13872Google Scholar

    [28]

    Bard A, Faulkner L 2000 Electrochemical Methods: Fundamentals and Applications (2nd Ed.) (New York: John Wiley & Sons) pp580−650

    [29]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215Google Scholar

    [30]

    An Y, He Y, Wei H, Liu S, Li M, Song Y, Qiu P, Rehman A, Zheng X, Peng M 2019 Results Phys. 12 804Google Scholar

    [31]

    Singh T, Lehnen T, Leuning T, Sahu D, Mathur S 2014 Appl. Surf. Sci. 289 27Google Scholar

    [32]

    Chang Y, Lu Y, Hong Y, Kuo C, Gwo S, Yeh J 2010 J. Appl. Phys. 107 043710Google Scholar

  • [1] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和. III族氮化物半导体及其合金的原子层沉积和应用. 物理学报, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240218
    [3] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [4] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用. 物理学报, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [5] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响. 物理学报, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [7] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [8] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [9] 李勇, 李惠琪, 夏洋, 刘邦武. 原子层沉积方法制备核-壳型纳米材料研究. 物理学报, 2013, 62(19): 198102. doi: 10.7498/aps.62.198102
    [10] 董亚斌, 夏洋, 李超波, 卢维尔, 饶志鹏, 张阳, 张祥, 叶甜春. 原子层沉积法 生长ZnO的性质与前驱体源量的关系研究. 物理学报, 2013, 62(14): 147306. doi: 10.7498/aps.62.147306
    [11] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰. 原子层沉积Al2O3/n-GaN MOS结构的电容特性. 物理学报, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [12] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [13] 周铁中, 李晶, 高连山. 被动型氢脉泽微波腔优化仿真设计(已撤稿). 物理学报, 2012, 61(5): 050601. doi: 10.7498/aps.61.050601
    [14] 王海艳, 赵国忠, 王新强. 不同抽运光强激发窄带隙半导体产生太赫兹辐射的研究. 物理学报, 2011, 60(4): 043202. doi: 10.7498/aps.60.043202
    [15] 范馨燕, 刘京郊, 刘金生, 武敬力. 多阵元光纤相干列阵的理论与实验研究. 物理学报, 2010, 59(4): 2462-2470. doi: 10.7498/aps.59.2462
    [16] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响. 物理学报, 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [17] 商丽燕, 林 铁, 周文政, 郭少令, 李东临, 高宏玲, 崔利杰, 曾一平, 褚君浩. 两个子带占据的In0.53Ga0.47As/In0.52Al0.48As量子阱中填充因子的变化规律. 物理学报, 2008, 57(6): 3818-3822. doi: 10.7498/aps.57.3818
    [18] 谢自力, 张 荣, 修向前, 刘 斌, 朱顺明, 赵 红, 濮 林, 韩 平, 江若琏, 施 毅, 郑有炓. InN薄膜的氧化特性研究. 物理学报, 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
    [19] 潘葳, 沈文忠. 六方InN薄膜的载流子输运特性研究. 物理学报, 2004, 53(5): 1501-1506. doi: 10.7498/aps.53.1501
    [20] 白 龙, 翁甲强, 方锦清, 罗晓曙. 强流离子束离子径向密度分布的模拟研究. 物理学报, 2004, 53(12): 4126-4130. doi: 10.7498/aps.53.4126
计量
  • 文章访问数:  3022
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-04-13
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回