搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于散射和次级诱发中子的缪子多模态成像

严江余 张全虎 霍勇刚

引用本文:
Citation:

基于散射和次级诱发中子的缪子多模态成像

严江余, 张全虎, 霍勇刚

Multimodal imaging of muon based on scattering and secondary induced neutrons

Yan Jiang-Yu, Zhang Quan-Hu, Huo Yong-Gang
PDF
HTML
导出引用
  • 现有以散射为主的宇宙线缪子成像难以从高原子序数材料中有效区分特殊核材料, 利用缪子在特殊核材料中产生的次级诱发中子标记入射缪子, 可从高原子序数材料中辨别特殊核材料, 但其成像时间长且成像质量较低. 缪子多模态成像利用缪子穿透材料的散射信息以及被材料阻止时产生次级诱发中子的缪子信息, 可有效解决单一成像方法的不足. 基于GEANT4程序设置探测模型, 以Cosmic-ray Shower Library为缪子源, 开发了与诱发中子符合的缪子成像、缪子散射成像、缪子多模态成像模拟程序, 并在模拟数据的基础上分别实现了成像算法, 得到了不同模型的成像结果. 模拟结果表明, 基于散射和次级诱发中子的缪子多模态成像不仅成像快、质量高, 而且能明显区分特殊核材料与其他高原子序数材料, 具有探测特殊核材料的独特优势.
    Muon scattering imaging technology can be used to detect nuclear material and is of considerable significance in nuclear safety. However, it is difficult to distinguish special nuclear materials from high-Z objects effectively by using the existing muon scattering imaging technologies. Muon-induced neutrons emitted from special nuclear materials can help to identify the existence of special nuclear materials. However, this method has long imaging time and low imaging quality. Multimodal imaging of muon uses both the information about scattering muons penetrating the material and the information about muons stopped by material and generating secondary induced neutrons, which can overcome the shortcomings of single imaging method effectively. The detection model is set up based on Geant4. The simulation programs of muon imaging in coincidence with muon induced neutrons, scattering imaging of muon, and multimodal imaging of muon are developed by using Cosmic-ray Shower Library as particle source, and the imaging algorithms are implemented respectively on the basis of the simulated data. Two imaging models are designed for muon scattering imaging. The first one is a single 235U cube, and the second one is composed of four cubes, namely 235U cube, 239Pu cube, lead cube and aluminum cube. This simulation has completed muon scattering imaging of single cube and four cubes. In the part of muon imaging in coincidence with muon induced neutrons, the neutronic gain of the HEU (90% 235U) plate, LEU (20% 235U) plate, and DU (0.2% 235U) plate, as well as the relationship between the neutronic gain of these three uranium plates and the energy and charged properties of the muon are obtained by simulation, and then two imaging models are set up. The first one is composed of four cubes, namely 235U cube, 239Pu cube, lead cube, and aluminum cube, and the other is comprised of multilayer nuclear components. The 2D and 3D reconstruction results of multi-objects and multilayer nuclear components are obtained through muon imaging in coincidence with muon induced neutrons. Then the multimodal imaging of muon for three cubes is realized in the presence or absence of iron shielding shell. The imaging capabilities are compared with the muon scattering imaging capacities and muon imaging capacities in coincidence with muon induced neutrons. Simulation studies indicate that multimodal imaging of muon based on scattering and secondary induced neutrons can effectively combine the advantages of every single imaging method. The multimodal imaging of muon can take advantage of available information more efficiently, which is helpful in improving the imaging quality. Multimodal imaging of muon not only has the advantages of short imaging time and high imaging quality, but also can distinguish special nuclear material from other high-Z materials clearly, which is vital for detecting special nuclear materials.
      通信作者: 霍勇刚, huoarmy@163.com
      Corresponding author: Huo Yong-Gang, huoarmy@163.com
    [1]

    Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar

    [2]

    罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar

    Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar

    [3]

    于百蕙 2016 博士学位论文 (北京: 清华大学)

    Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [4]

    何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)

    He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [5]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar

    [6]

    Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar

    [7]

    Bonechi L, Alessandro R D, Giammanco A 2020 Rev. Phys. 5 100038Google Scholar

    [8]

    Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar

    [9]

    Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar

    [10]

    Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024Google Scholar

    [11]

    智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar

    Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar

    [12]

    Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277Google Scholar

    [13]

    何伟波, 肖洒, 帅茂兵, 赖新春, 安琪 2016 核电子学与探测技术 36 297Google Scholar

    He W B, Xiao S, Shuai M B, Lai X C, An Q 2016 Nucl. Electron. Detect. Technol. 36 297Google Scholar

    [14]

    Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos: Los Alamos National Lab, LA-UR-13-28292 [R])

    [15]

    Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius II J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109

    [16]

    Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A New Method of Passive Counting of Nuclear Missile Warheads-a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])

    [17]

    Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006

    [18]

    Hagmann C, Lange D, Verbeke J, Wright D http://nuclear.llnl.gov/simulation/ [2021-4-13]

    [19]

    Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar

    [20]

    罗志飞 2016 博士学位论文(北京: 清华大学)

    Luo Z F 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [21]

    Wheeler, John A 1949 Rev. Mod. Phys. 21 133

    [22]

    Oberacker V E, Umar A S, Wells J C, Bottcher C, Strayer M R, Maruhn J A 1993 Phys. Rev. C 48 1297Google Scholar

    [23]

    Gorringe T P, Hertzog D W 2015 Prog. Part. Nucl. Phys. 84 73Google Scholar

    [24]

    谢仲生, 尹邦华 1996 核反应堆物理分析(下册) (北京: 原子能出版社) 第11页

    Xie Z S, Yin B H 1996 Nuclear Reactor Physical Analysis (Vol. 2) (Beijing: Atomic Energy Press) p11 (in Chinese)

    [25]

    Brandt L J 2015 Ph. D. Dissertation (Ohio: Air University)

    [26]

    Fetter S, Valery A F, Miller M, Mozley R, Prilutsky O F, Rodionov S N, Sagdeev R Z 1990 Sci. Global Secur. 1 225Google Scholar

    [27]

    Fetter S, Valery A F, Oleg F, Prilutsky O F, Sagdeev R Z 1990 Sci. Global Secur. 1 255Google Scholar

    [28]

    Hippel F V, Sagdeev R Z, Hafemeister D W 1991 Phys. Today 44 102Google Scholar

  • 图 1  探测模型设置

    Fig. 1.  Detecting model setting.

    图 2  诱发中子符合的缪子成像图解(蓝色轨迹为被次级中子标记的入射缪子轨迹)

    Fig. 2.  Diagram of muon imaging in coincidence with muon induced neutrons (the blue trajectories are the incident muon trajectories tagged by muon induced neutrons).

    图 3  散射成像模型 (a) 单物块模型; (b) 四物块模型

    Fig. 3.  Scattering imaging model: (a) Single cube model; (b) four cubes model.

    图 4  单物块模型散射成像结果

    Fig. 4.  Scattering imaging results of a single cube model.

    图 5  四物块模型散射成像结果

    Fig. 5.  Scattering imaging results of four cubes model.

    图 6  中子增益模拟图 (a) CRY缪子源; (b) GPS缪子源

    Fig. 6.  Neutron gain simulation diagram: (a) Simulation with CRY; (b) simulation with GPS.

    图 7  中子增益结果

    Fig. 7.  Result of neutronic gain.

    图 8  诱发中子符合的缪子成像模型 (a) 核部件具体结构图; (b) 核部件建模示意图

    Fig. 8.  Imaging model of muon imaging in coincidence with muon induced neutrons: (a) Detailed structure diagram of nuclear components; (b) nuclear components model.

    图 9  四物块模型的诱发中子符合的缪子成像图 (a) 四物块模型二维成像结果; (b) 四物块模型三维成像结果

    Fig. 9.  Muon imaging in coincidence with muon induced neutrons of four cubes model: (a) 2D imaging results of four cubes model; (b) 3D imaging results of four cubes model.

    图 10  核部件模型的诱发中子符合的缪子成像图 (a) 核部件模型二维成像结果; (b) 核部件模型三维成像结果

    Fig. 10.  Muon imaging in coincidence with muon induced neutrons of nuclear components: (a) 2D imaging results of nuclear components; (b) 3D imaging results of nuclear components.

    图 11  缪子多模态成像模型 (a) 三物块成像模型; (b) 铁外壳屏蔽的三物块成像模型

    Fig. 11.  Imaging model of multimodal imaging of muon: (a) Three cubes model; (b) three cubes model with iron shielding shell.

    图 12  三物块成像结果 (a) 缪子散射成像; (b) 诱发中子符合的缪子成像; (c) 缪子多模态成像

    Fig. 12.  Imaging results of three cubes model: (a) Muon scattering imaging; (b) muon imaging in coincidence with muon induced neutrons; (c) multimodal imaging of muon.

    图 13  铁屏蔽下三物块成像结果 (a) 缪子散射成像; (b) 诱发中子符合的缪子成像; (c) 缪子多模态成像

    Fig. 13.  Imaging results of three cubes model with iron shielding shell: (a) Muon scattering imaging; (b) muon imaging in coincidence with muon induced neutrons; (c) multimodal imaging of muon

  • [1]

    Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar

    [2]

    罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar

    Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar

    [3]

    于百蕙 2016 博士学位论文 (北京: 清华大学)

    Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [4]

    何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)

    He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [5]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar

    [6]

    Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar

    [7]

    Bonechi L, Alessandro R D, Giammanco A 2020 Rev. Phys. 5 100038Google Scholar

    [8]

    Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar

    [9]

    Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar

    [10]

    Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024Google Scholar

    [11]

    智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar

    Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar

    [12]

    Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277Google Scholar

    [13]

    何伟波, 肖洒, 帅茂兵, 赖新春, 安琪 2016 核电子学与探测技术 36 297Google Scholar

    He W B, Xiao S, Shuai M B, Lai X C, An Q 2016 Nucl. Electron. Detect. Technol. 36 297Google Scholar

    [14]

    Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos: Los Alamos National Lab, LA-UR-13-28292 [R])

    [15]

    Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius II J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109

    [16]

    Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A New Method of Passive Counting of Nuclear Missile Warheads-a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])

    [17]

    Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006

    [18]

    Hagmann C, Lange D, Verbeke J, Wright D http://nuclear.llnl.gov/simulation/ [2021-4-13]

    [19]

    Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar

    [20]

    罗志飞 2016 博士学位论文(北京: 清华大学)

    Luo Z F 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [21]

    Wheeler, John A 1949 Rev. Mod. Phys. 21 133

    [22]

    Oberacker V E, Umar A S, Wells J C, Bottcher C, Strayer M R, Maruhn J A 1993 Phys. Rev. C 48 1297Google Scholar

    [23]

    Gorringe T P, Hertzog D W 2015 Prog. Part. Nucl. Phys. 84 73Google Scholar

    [24]

    谢仲生, 尹邦华 1996 核反应堆物理分析(下册) (北京: 原子能出版社) 第11页

    Xie Z S, Yin B H 1996 Nuclear Reactor Physical Analysis (Vol. 2) (Beijing: Atomic Energy Press) p11 (in Chinese)

    [25]

    Brandt L J 2015 Ph. D. Dissertation (Ohio: Air University)

    [26]

    Fetter S, Valery A F, Miller M, Mozley R, Prilutsky O F, Rodionov S N, Sagdeev R Z 1990 Sci. Global Secur. 1 225Google Scholar

    [27]

    Fetter S, Valery A F, Oleg F, Prilutsky O F, Sagdeev R Z 1990 Sci. Global Secur. 1 255Google Scholar

    [28]

    Hippel F V, Sagdeev R Z, Hafemeister D W 1991 Phys. Today 44 102Google Scholar

  • [1] 王颖, 殳蕾. μSR实验进展与缪子源发展趋势. 物理学报, 2024, 73(19): 197601. doi: 10.7498/aps.73.20240940
    [2] 李强, 李样, 吕游, 潘子文, 鲍煜. 中国散裂中子源缪子谱仪及其应用展望. 物理学报, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [4] 李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友. 基于缪子离散能量的材料鉴别实验研究. 物理学报, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [5] 张建鸣, 李志伟, 刘芳, 李景太, 冒鑫, 程雅苹, 庞捷, 冯鑫茁, 倪四道, 欧阳晓平, 韩然. 多重库仑散射对小尺度物体缪子透射成像精度的影响. 物理学报, 2023, 72(2): 021401. doi: 10.7498/aps.72.20221792
    [6] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [7] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [8] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [9] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射. 物理学报, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [10] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [11] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术. 物理学报, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [12] 张美, 张显鹏, 李奎念, 盛亮, 袁媛, 宋朝晖, 李阳. 中子散射成像探测角分辨研究. 物理学报, 2015, 64(4): 042801. doi: 10.7498/aps.64.042801
    [13] 江淮, 汉敏, 赵惠昌, 张淑宁. 基于子带补偿的弹载聚束SAR成像算法. 物理学报, 2014, 63(19): 198404. doi: 10.7498/aps.63.198404
    [14] 类成新, 冯东太, 吴振森. 掺杂对随机分布团簇粒子缪勒矩阵的影响. 物理学报, 2011, 60(11): 115202. doi: 10.7498/aps.60.115202
    [15] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 二维声子晶体平板成像中的通道特征. 物理学报, 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
    [16] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [17] 类成新, 张化福, 刘汉法. 随机分布烟尘簇团粒子缪勒矩阵的数值计算. 物理学报, 2009, 58(10): 7168-7175. doi: 10.7498/aps.58.7168
    [18] 范希庆, 刘砚章, 王淮生, 刘福绥. 多声子强耦合超导理论. 物理学报, 1989, 38(1): 53-59. doi: 10.7498/aps.38.53
    [19] 刘福绥, 范希庆, 刘砚章, 王淮生, 阮英超. 电子多声子作用对散射时间的效应. 物理学报, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [20] 张玉爱, 江德生, 许振嘉. InP的多声子红外吸收. 物理学报, 1986, 35(7): 905-913. doi: 10.7498/aps.35.905
计量
  • 文章访问数:  4676
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 修回日期:  2021-05-23
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回