-
全无机CsPbIBr2钙钛矿材料由于兼顾了光学性能和稳定性而受到人们广泛关注. 然而, 传统一步旋涂法下制备的CsPbIBr2薄膜通常存在较多缺陷, 导致电池器件效率难以提升. 考虑到常规反溶剂法工艺窗口较窄且重复性差的问题, 提出一种前驱体膜处理工艺以制备高效稳定的碳基CsPbIBr2电池. 以异丙醇(IPA)作为反溶剂, 通过调控前驱体膜中二甲基亚砜(DMSO)的蒸发速率进而调整钙钛矿的形核位置, 并在IPA中加入了硫氰酸胍(C2H4N4S)作为钝化剂来调控钙钛矿的成核及结晶过程. 结果表明, 优化后的CsPbIBr2薄膜致密性有明显提升, 结晶性以及晶粒的取向性有所改善, 具有更好的载流子分离和传输效率. 制备的电池器件光电转换效率最高达到6.71%, 与参比器件5.29%的效率相比提升了近21.16%. 此外, 经前驱体膜处理工艺后制备的钙钛矿电池具备更高的稳定性. 本研究旨在提出一种新的制备技术来提高全DMSO溶剂体系下无机钙钛矿薄膜的质量.
-
关键词:
- CsPbIBr2太阳能电池 /
- 前驱体膜处理工艺 /
- 硫氰酸胍 /
- 异丙醇
All-inorganic perovskite has attracted extensive attention due to its photovoltaic properties and stability. Typically, the α-phase CsPbI3 has an ideal bandgap of 1.73 eV suitable for the construction of high performance inorganic PSCs. But it suffers phase instability under ambient condition because of the unsatisfactory tolerance factor. By incorporating Br atoms into the perovskite structure, can greatly enhance the phase stability can be greatly enhanced. For example, CsPbBr3 shows an excellent ambient stability and a wide bandgap of 2.3 eV that results in a limited light absorbtion. With the consideration from the unified perspective of the bandgap and the ambient phase stability, CsPbIBr2 has a relatively appropriate bandgap (2.05 eV) and higher stability than CsPbI3 and CsPbI2Br, which is made a good option for stable and efficient PSCs. However, there exist numerous defects on the CsPbIBr2 film prepared by conventional one-step deposition method, which seriously affect the photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs). Considering the short dripping time and poor reproducibility of conventional anti-solvent technology, a precursor film preparation process is proposed to fabricate efficient and stable carbon-based CsPbIBr2 perovskite solar cells. Using isopropyl alcohol (IPA) as the anti-solvent, the nucleation position of perovskite can be adjusted by regulating the evaporation rate of DMSO in the precursor film. In addition, guanidine thiocyanate (C2H4N4S) is added into IPA solution as a passivator to regulate the nucleation and crystallization process of perovskite. The carboxylic acid group of C2H4N4S can crosslink to Pb2+ of CsPbIBr2 via a chelating interaction, resulting in the easier decomposition of the CsI-DMSO-PbBr2 intermediate phase in the spin-coating process of the precursor film. The amino group of C2H4N4S can also promote the crystallization and suppress the ion migration of the perovskite film through hydrogen bonds. The result shows that the compactness of the optimized CsPbIBr2 film is significantly improved and the average grain size is about 800nm. The crystallinity and grain orientation are improved, and thus achieving better carrier separation and transport efficiency. The highest PCE of carbon-based CsPbIBr2 PSC is obviously improved from 5.29% to 6.71%, i.e. increased by almost 21.16% compared with the control sample. Furthermore, the PSCs with precursor film preparation process possesses better long-term stability. The results obtained in this paper demonstrate that the new preparation technology can improve the quality of inorganic perovskite films in pure DMSO solvent system.-
Keywords:
- CsPbIBr2 perovskite solar cell /
- precursor film preparation process /
- C2H4N4S /
- IPA
[1] Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar
[2] Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar
[3] https://www.nrel.gov/pv/cell-efficiency.html (8 6 2021).
[4] Bisquert J, Juarez-Perez EJ. 2019 J. Phys. Chem. Lett. 10: 5889.
[5] Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Joule 3 191Google Scholar
[6] Mariotti S, Hutter O. S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar
[7] Subhani W S, Wang K, Du M, Liu S F 2019 Nano Energy 61 165Google Scholar
[8] Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T 2019 J. Mater. Chem. A. 7 8690Google Scholar
[9] Zhang Z, He F, Zhu W, Chen D, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2020 Sustain. Energ. Fuels. 4 4506Google Scholar
[10] Yang B, Wang M, Hu X, Zhou T, Zang Z 2019 Nano Energy 57 718Google Scholar
[11] Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 130 3849Google Scholar
[12] Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar
[13] Steele J A, Lai M, Zhang Y, Lin Z, Hofkens J, Roeffaers B J M, Yang P. 2020 Acc. Mater. Res. 1 3Google Scholar
[14] Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, Tang Q 2019 J. Mater. Chem. A. 7 21036Google Scholar
[15] Li Z, Zhou F, Wang Q, Ding L, Jin Z 2020 Nano Energy 71 104634Google Scholar
[16] Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 ACS. Energy. Lett. 5 290
[17] Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng Y, Hagfeldt A, Sun L 2020 J. Energy. Chem. 46 8Google Scholar
[18] Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W. 2019 Sol. RRL. 3 1900135Google Scholar
[19] Yin X, Guo Y, Liu J, Que W, Ma F, Xu K 2020 J Phys. Chem. Lett. 11 7035Google Scholar
[20] Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar
[21] Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y 2020 Nano-Micro Lett. 12 1Google Scholar
[22] Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y 2018 J. Mater. Chem. A. 6 19810.
[23] Han S, Zhang H, Wang R, He Q 2021 Mat Sci. Semicon. Proc. 131 105847Google Scholar
[24] Subhani W S, Wang K, Du M, Wang X, Liu S 2019 Adv. Energy. Mater. 9 1803785Google Scholar
[25] Li N, Zhu Z, Li J, Jen A K Y 2018 Adv. Energy. Mater. 8 1800525Google Scholar
[26] Luo J, Qiu R Z, Yang Z S, Wang Y X, Zhang Q F 2018 RSC. Adv. 8 724Google Scholar
[27] Song S, Hörantner M T, Choi K, Snaith H J, Park T 2017 J. Mater. Chem. A. 5 3812Google Scholar
[28] Wang Y, Wang K, Subhani W S, Zhang C, Jiang X, Wang S, Bao H, Liu L, Wan L, Liu S 2020 Small 16 1907283Google Scholar
[29] Zhu W, Chai W, Deng M, Chen D, Chen D, Zhang J, Zhang C, Hao Y 2020 Electrochim. Acta. 330 135325Google Scholar
[30] Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 2997Google Scholar
[31] Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J 2018 ACS Appl Energy. Mater. 1 4991Google Scholar
[32] Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dail Q, Xu L, Song H 2019 ACS Appl. Mater. Inter. 11 33868Google Scholar
[33] Bian J, Wu Y, Bi W, Liu L, Su X, Zhang B 2020 Energ Fuel. 34 11472Google Scholar
[34] Lu H, Liu Y, Ahlawat P, Mishra A, Tress W, Eickemeyer F, Yang Y, Fu F, Wang Z, Avalos C, Carlsen B, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin S, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M 2020 Science. 370 6512
[35] Abdelsamie M, Li T, Babbe F, Xu J, Han Q, Blum V, M Sutter-Fella C, B Mitzi D, Toney M F 2021 ACS Appl. Mater. Inter. 13 13212Google Scholar
-
图 3 不同制备工艺下CsPbIBr2薄膜表面SEM图 (a) 传统方法; (b) IPA处理; (c) IPA处理、C2H4N4S钝化(0.4 mg/ml); (d) IPA处理、C2H4N4S钝化(0.8 mg/ml); 对应器件截面SEM图 (e−h)
Fig. 3. SEM images of CsPbIBr2 film under different preparation processes: (a) Conventional method; (b) adding IPA solution; (c) adding IPA solution with 0.4 mg/ml of C2H4N4S; (d) adding IPA solution with 0.8 mg/ml of C2H4N4S; (e−h) corresponding crosssectional SEM images.
表 1 不同C2H4N4S浓度下钙钛矿电池性能指标
Table 1. Photovoltaic Parameters of PSCs based on different concentration of C2H4N4S
Perovskite Jsc/mA cm–2 Voc/V FF/% PCE/% Control 8.25 1.19 53.52 5.29 IPA 9.19 1.21 53.77 5.95 IPA+0.2 mg/mL C2H4N4S 10.32 1.21 50.10 6.24 IPA+0.4 mg/mL C2H4N4S 10.61 1.23 52.40 6.71 IPA+0.6 mg/mL C2H4N4S 10.89 1.19 50.12 6.38 IPA+0.8 mg/mL C2H4N4S 10.30 1.19 49.42 6.07 注: FF即填充因子(fill factor); PCE即光电转换效率(photoelectric conversion efficiency). -
[1] Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar
[2] Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar
[3] https://www.nrel.gov/pv/cell-efficiency.html (8 6 2021).
[4] Bisquert J, Juarez-Perez EJ. 2019 J. Phys. Chem. Lett. 10: 5889.
[5] Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Joule 3 191Google Scholar
[6] Mariotti S, Hutter O. S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar
[7] Subhani W S, Wang K, Du M, Liu S F 2019 Nano Energy 61 165Google Scholar
[8] Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T 2019 J. Mater. Chem. A. 7 8690Google Scholar
[9] Zhang Z, He F, Zhu W, Chen D, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2020 Sustain. Energ. Fuels. 4 4506Google Scholar
[10] Yang B, Wang M, Hu X, Zhou T, Zang Z 2019 Nano Energy 57 718Google Scholar
[11] Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 130 3849Google Scholar
[12] Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar
[13] Steele J A, Lai M, Zhang Y, Lin Z, Hofkens J, Roeffaers B J M, Yang P. 2020 Acc. Mater. Res. 1 3Google Scholar
[14] Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, Tang Q 2019 J. Mater. Chem. A. 7 21036Google Scholar
[15] Li Z, Zhou F, Wang Q, Ding L, Jin Z 2020 Nano Energy 71 104634Google Scholar
[16] Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 ACS. Energy. Lett. 5 290
[17] Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng Y, Hagfeldt A, Sun L 2020 J. Energy. Chem. 46 8Google Scholar
[18] Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W. 2019 Sol. RRL. 3 1900135Google Scholar
[19] Yin X, Guo Y, Liu J, Que W, Ma F, Xu K 2020 J Phys. Chem. Lett. 11 7035Google Scholar
[20] Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar
[21] Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y 2020 Nano-Micro Lett. 12 1Google Scholar
[22] Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y 2018 J. Mater. Chem. A. 6 19810.
[23] Han S, Zhang H, Wang R, He Q 2021 Mat Sci. Semicon. Proc. 131 105847Google Scholar
[24] Subhani W S, Wang K, Du M, Wang X, Liu S 2019 Adv. Energy. Mater. 9 1803785Google Scholar
[25] Li N, Zhu Z, Li J, Jen A K Y 2018 Adv. Energy. Mater. 8 1800525Google Scholar
[26] Luo J, Qiu R Z, Yang Z S, Wang Y X, Zhang Q F 2018 RSC. Adv. 8 724Google Scholar
[27] Song S, Hörantner M T, Choi K, Snaith H J, Park T 2017 J. Mater. Chem. A. 5 3812Google Scholar
[28] Wang Y, Wang K, Subhani W S, Zhang C, Jiang X, Wang S, Bao H, Liu L, Wan L, Liu S 2020 Small 16 1907283Google Scholar
[29] Zhu W, Chai W, Deng M, Chen D, Chen D, Zhang J, Zhang C, Hao Y 2020 Electrochim. Acta. 330 135325Google Scholar
[30] Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 2997Google Scholar
[31] Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J 2018 ACS Appl Energy. Mater. 1 4991Google Scholar
[32] Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dail Q, Xu L, Song H 2019 ACS Appl. Mater. Inter. 11 33868Google Scholar
[33] Bian J, Wu Y, Bi W, Liu L, Su X, Zhang B 2020 Energ Fuel. 34 11472Google Scholar
[34] Lu H, Liu Y, Ahlawat P, Mishra A, Tress W, Eickemeyer F, Yang Y, Fu F, Wang Z, Avalos C, Carlsen B, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin S, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M 2020 Science. 370 6512
[35] Abdelsamie M, Li T, Babbe F, Xu J, Han Q, Blum V, M Sutter-Fella C, B Mitzi D, Toney M F 2021 ACS Appl. Mater. Inter. 13 13212Google Scholar
计量
- 文章访问数: 6238
- PDF下载量: 92
- 被引次数: 0