搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔结构体材料热整流效应

邵春瑞 李海洋 王军 夏国栋

引用本文:
Citation:

多孔结构体材料热整流效应

邵春瑞, 李海洋, 王军, 夏国栋

Thermal rectification enhancement based on porous structure in bulk materials

Shao Chun-Rui, Li Hai-Yang, Wang Jun, Xia Guo-Dong
PDF
HTML
导出引用
  • 基于傅里叶导热定律, 两种具有不同热导率温度依赖特性的材料组合而成的两段式组合材料可以实现热整流效应. 本文提出在体材料上均匀布置多孔结构, 通过多孔结构孔隙率调整材料的热导率参数, 进而强化热整流效应. 基于有限元方法和有效介质理论, 计算并分析了温差和孔隙率等参数对体材料热整流系数的影响. 计算结果表明, 温差较大时, 孔隙率对对体材料热整流系数的影响较为明显. 在热导率随温度升高而增大的材料中布置多孔结构, 一般会降低系统的热整流系数; 若在热导率随温度升高而减小的材料中布置多孔结构, 则存在一个最佳的孔隙率, 相对于无多孔结构的系统, 其热整流系数可以提高2—3倍. 本文研究结果为体材料热整流系数的调控提供了新的思路.
    Thermal rectification effect refers to an asymmetric heat transfer phenomenon (namely, the amount of heat flux depends on the direction of temperature gradient). A two-segment bar made of two materials that have thermal conductivities with different temperature-dependence, can realize the thermal rectification effect. In the present paper, we propose to use porous structure on the bulk material to modify the thermal conductivity of bulk material. It is found that the thermal rectification effect can be enhanced by the porous structure. The finite element method and effective medium approximation are used to analyze the influence of porosity on the thermal rectification ratio of the two-segment system. The calculation results are consistent with each other. Under low temperature bias, the effect of the porosity is weak, while its influence becomes very significant when the temperature difference is high. Usually, thermal rectification ratio decreases if the porous structure is made on the segment whose thermal conductivity increases with temperature increasing. If the porous structure is made on the segment with negative temperature-dependent thermal conductivity, an optimal porosity can be found. For low porosity, the forward heat flux keeps almost unchanged while the reverse heat flux decreases by more than half, and the thermal rectification ratio can be increased to twice or more than thrice that in the case of no porous structure. For a fixed temperature difference, the influence of porosity on the thermal rectification ratio increases with the augment of the power exponent value.
      通信作者: 王军, jwang@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51776007)、北京市科技新星计划(批准号: Z191100001119033)和北京市教委青年拔尖人才培养计划(批准号: CITTCD201904015)资助的课题
      Corresponding author: Wang Jun, jwang@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51776007), the Beijing Nova Program of Science and Technology, China (Grant No. Z191100001119033), and the Young Talent Project of Beijing Municipal Education Committee, China (Grant No. CITTCD201904015).
    [1]

    Roberts N A, Walker D G 2011 Inter. J. Therm. Sci. 50 648Google Scholar

    [2]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [3]

    Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [4]

    Varga S, Oliveira A C, Afonso C F 2002 Energy and Buildings 34 227Google Scholar

    [5]

    Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321Google Scholar

    [6]

    Wang L, Li B 2007 Phys. Rev. Lett. 99 177208Google Scholar

    [7]

    Paolucci F, Marchegiani G, Strambini E, Giazotto F 2018 Phys. Rev. Appl. 10 024003Google Scholar

    [8]

    Dames C 2009 J. Heat Trans. 131 061301Google Scholar

    [9]

    Henry A, Prasher R, Majumdar A 2020 Nat. Energy 5 635Google Scholar

    [10]

    Starr C 1935 J. Appl. Phys. 7 15

    [11]

    Rogers G F C 1961 Intern. J. Heat Mass Tran. 2 150Google Scholar

    [12]

    Somers R R, Fletcher L S, Flack R D 1987 AIAA J. 25 620Google Scholar

    [13]

    Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar

    [14]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107Google Scholar

    [15]

    李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107Google Scholar

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar

    [16]

    鞠生宏, 梁新刚 2013 物理学报 62 026101Google Scholar

    Ju S H, Liang X G 2013 Acta Phys. Sin. 62 026101Google Scholar

    [17]

    温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣 2015 物理学报 64 216501Google Scholar

    Wen J L, Xu Z C, Gu Y, Zheng D Q, Zhong W R 2015 Acta Phys. Sin. 64 216501Google Scholar

    [18]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [19]

    Hoff H 1985 Physica A:Stat. Mech. Appl. 131 449Google Scholar

    [20]

    Hu B, He D, Yang L, Zhang Y 2006 Phys. Rev. E 74 060201

    [21]

    Go D, Sen M 2010 J. Heat Trans. 132 124502Google Scholar

    [22]

    Herrera F A, Luo T, Go D B 2017 J. Heat Trans. 139 091301Google Scholar

    [23]

    朱玉鑫, 王珏, 罗爽, 王军, 夏国栋 2016 中国科学: 技术科学 46 175Google Scholar

    Zhu Y X, W Y, Luo S, Wang J, Xia G D 2016 Sci. Sin. Tech. 46 175Google Scholar

    [24]

    赵建宁, 刘冬欢, 魏东, 尚新春 2020 物理学报 69 056501Google Scholar

    Zhao J N, Liu D H, Wei D, Shang X C 2020 Acta Phys. Sin. 69 056501Google Scholar

    [25]

    Sawaki D, Kobayashi W, Moritomo Y, Terasaki I 2011 Appl. Phys. Lett. 98 081915Google Scholar

    [26]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905Google Scholar

    [27]

    Yang Y, Chen H, Wang H, Li N, Zhang L 2018 Phys. Rev. E 98 042131

    [28]

    Ren J, Zhu J X 2013 Phys. Rev. B 87 241412

    [29]

    Li B, Lan J, Wang L 2005 Phys. Rev. Lett. 95 104302Google Scholar

    [30]

    Kang H, Yang F, Urban J 2018 Phys. Rev. Appl. 10 024034Google Scholar

    [31]

    Zhao J, Wei D, Gao A, Dong H, Bao Y, Jiang Y, Liu D 2020 Appl. Thermal Engineering 176 115410Google Scholar

    [32]

    Kasali S O, Ordonez-Miranda J, Joulain K 2020 Inter. J. Heat and Mass Transfer 154 119739Google Scholar

    [33]

    Zhu W, Wu G, Chen H, Ren J 2018 Frontiers in Energy Research 6 9Google Scholar

    [34]

    王子, 张丹妹, 任捷 2019 物理学报 68 220302Google Scholar

    Wang Z, Zhang D M, Ren J 2019 Acta Phys. Sin. 68 220302Google Scholar

    [35]

    Garnett J 1904 Philos. Trans. R. Soc. London 203 385Google Scholar

    [36]

    Bruggeman D A G 1935 Annalen der Physik 416 636Google Scholar

    [37]

    Levy O, Stroud D 1997 Phys. Rev. B 56 8035Google Scholar

    [38]

    Huang J P, Yu K W 2006 Physics Reports 431 87Google Scholar

    [39]

    Gu G, Yu K W, Hui P M 1998 Phys. Rev. B 58 3057Google Scholar

    [40]

    Dai G, Huang J 2020 Intern. J. Heat and Mass Transfer 147 118917Google Scholar

    [41]

    Touloukian Y S, Powell R W, Ho C Y, Klemens P 1970 Thermophysical Properties of Matter—The TPRC Data Series. (Vol.1) New York, pp1–1595

  • 图 1  两段式复合体材料热整流系统示意图

    Fig. 1.  Schematic diagram of the two-segment thermal rectifier.

    图 2  (α1, α2)=(+3, –3)时, 正反热流量及热整流系数随无量纲温差的变化趋势

    Fig. 2.  For the case of (α1, α2)=(+3, –3), the heat flux and thermal rectification ratio versus the dimensionless temperature difference.

    图 3  |Δ| = 1.5时, 正反模式下热整流器内部的温度分布和局域热导率分布

    Fig. 3.  For the case of |Δ| = 1.5, temperature and local thermal conductivity distribution under forward and reverse cases.

    图 4  (a) 材料1中的多孔结构; (b) 热整流系数(左)及正反热流(右)随材料1或材料2孔隙率f的变化趋势

    Fig. 4.  (a) Schematic diagram of the porous structure of the thermal rectifier (drill on segment 1); (b) thermal rectification ratio (left) and heat flux (right) versus porosity.

    图 5  两段式体材料热整流器内的热阻分布 (a) 正向模式; (b) 反向模式

    Fig. 5.  Local thermal resistance distribution in two-segment thermal rectifier: (a) Forward case; (b) reverse case.

    图 6  (α1, α2) = (+3, –3)时, (a) 不同温差下热整流系数随孔隙率的变化趋势, (b) 不同温差下无孔热整流系数和有孔最佳热整流系数及对应孔隙率

    Fig. 6.  For the case of (α1, α2) = (+3, –3), (a) thermal rectification ratio versus porosity under different dimensionless temperature differences, (b) thermal rectification ratio without porous structure and the optimal thermal rectification ratio under different dimensionless temperature differences.

    图 7  |Δ| = 1.5时, (a) 改变幂指数大小和 (b) 改变幂指数组合时, 热整流系数随孔隙率的变化趋势

    Fig. 7.  For the case of |Δ| = 1.5, thermal rectification ratio versus porosity under (a) different magnitude of the power exponent and (b) different combination of power exponent.

    图 8  |Δ| = 1.5时, 不同孔隙率下, 热辐射对热整流系数的影响

    Fig. 8.  For the case of |Δ| = 1.5, thermal rectification ratio versus porosity under ε = 0 and ε = 1.

    图 9  热整流系数(左)及正反热流(右)随铍镁合金或金属锌孔隙率f的变化趋势

    Fig. 9.  Thermal rectification ratio (left) and heat flux (right) versus porosity in a Be & Mg alloy-Zn two-segment system.

    图 10  多孔介质模型示意图(均匀分布10 × 15个圆形孔)

    Fig. 10.  Schematic diagram of porous media (10 × 15 circular holes are uniformly distributed).

    图 11  (a) 多孔介质有效热导率随孔隙率的变化关系; (b) |Δ| = 1.5时, EMA与FEM计算所得热流与孔隙率的变化关系

    Fig. 11.  (a) The relationship between the effective thermal conductivity of the porous medium and the porosity; (b) the comparison of the heat flux calculated by EMA and FEM for the case of |Δ| = 1.5.

    图 12  |Δ| = 1.5时, EMA与FEM计算所得热整流系数随材料1或材料2孔隙率的变化趋势

    Fig. 12.  Comparison of the thermal rectification ratio calculated by EMA and FEM for the case of |Δ| = 1.5.

    图 13  热整流系数随热导率参数比值的变化趋势

    Fig. 13.  Thermal rectification ratio versus thermal conductivity parameter ratio.

  • [1]

    Roberts N A, Walker D G 2011 Inter. J. Therm. Sci. 50 648Google Scholar

    [2]

    Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [3]

    Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [4]

    Varga S, Oliveira A C, Afonso C F 2002 Energy and Buildings 34 227Google Scholar

    [5]

    Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321Google Scholar

    [6]

    Wang L, Li B 2007 Phys. Rev. Lett. 99 177208Google Scholar

    [7]

    Paolucci F, Marchegiani G, Strambini E, Giazotto F 2018 Phys. Rev. Appl. 10 024003Google Scholar

    [8]

    Dames C 2009 J. Heat Trans. 131 061301Google Scholar

    [9]

    Henry A, Prasher R, Majumdar A 2020 Nat. Energy 5 635Google Scholar

    [10]

    Starr C 1935 J. Appl. Phys. 7 15

    [11]

    Rogers G F C 1961 Intern. J. Heat Mass Tran. 2 150Google Scholar

    [12]

    Somers R R, Fletcher L S, Flack R D 1987 AIAA J. 25 620Google Scholar

    [13]

    Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar

    [14]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107Google Scholar

    [15]

    李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107Google Scholar

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar

    [16]

    鞠生宏, 梁新刚 2013 物理学报 62 026101Google Scholar

    Ju S H, Liang X G 2013 Acta Phys. Sin. 62 026101Google Scholar

    [17]

    温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣 2015 物理学报 64 216501Google Scholar

    Wen J L, Xu Z C, Gu Y, Zheng D Q, Zhong W R 2015 Acta Phys. Sin. 64 216501Google Scholar

    [18]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [19]

    Hoff H 1985 Physica A:Stat. Mech. Appl. 131 449Google Scholar

    [20]

    Hu B, He D, Yang L, Zhang Y 2006 Phys. Rev. E 74 060201

    [21]

    Go D, Sen M 2010 J. Heat Trans. 132 124502Google Scholar

    [22]

    Herrera F A, Luo T, Go D B 2017 J. Heat Trans. 139 091301Google Scholar

    [23]

    朱玉鑫, 王珏, 罗爽, 王军, 夏国栋 2016 中国科学: 技术科学 46 175Google Scholar

    Zhu Y X, W Y, Luo S, Wang J, Xia G D 2016 Sci. Sin. Tech. 46 175Google Scholar

    [24]

    赵建宁, 刘冬欢, 魏东, 尚新春 2020 物理学报 69 056501Google Scholar

    Zhao J N, Liu D H, Wei D, Shang X C 2020 Acta Phys. Sin. 69 056501Google Scholar

    [25]

    Sawaki D, Kobayashi W, Moritomo Y, Terasaki I 2011 Appl. Phys. Lett. 98 081915Google Scholar

    [26]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905Google Scholar

    [27]

    Yang Y, Chen H, Wang H, Li N, Zhang L 2018 Phys. Rev. E 98 042131

    [28]

    Ren J, Zhu J X 2013 Phys. Rev. B 87 241412

    [29]

    Li B, Lan J, Wang L 2005 Phys. Rev. Lett. 95 104302Google Scholar

    [30]

    Kang H, Yang F, Urban J 2018 Phys. Rev. Appl. 10 024034Google Scholar

    [31]

    Zhao J, Wei D, Gao A, Dong H, Bao Y, Jiang Y, Liu D 2020 Appl. Thermal Engineering 176 115410Google Scholar

    [32]

    Kasali S O, Ordonez-Miranda J, Joulain K 2020 Inter. J. Heat and Mass Transfer 154 119739Google Scholar

    [33]

    Zhu W, Wu G, Chen H, Ren J 2018 Frontiers in Energy Research 6 9Google Scholar

    [34]

    王子, 张丹妹, 任捷 2019 物理学报 68 220302Google Scholar

    Wang Z, Zhang D M, Ren J 2019 Acta Phys. Sin. 68 220302Google Scholar

    [35]

    Garnett J 1904 Philos. Trans. R. Soc. London 203 385Google Scholar

    [36]

    Bruggeman D A G 1935 Annalen der Physik 416 636Google Scholar

    [37]

    Levy O, Stroud D 1997 Phys. Rev. B 56 8035Google Scholar

    [38]

    Huang J P, Yu K W 2006 Physics Reports 431 87Google Scholar

    [39]

    Gu G, Yu K W, Hui P M 1998 Phys. Rev. B 58 3057Google Scholar

    [40]

    Dai G, Huang J 2020 Intern. J. Heat and Mass Transfer 147 118917Google Scholar

    [41]

    Touloukian Y S, Powell R W, Ho C Y, Klemens P 1970 Thermophysical Properties of Matter—The TPRC Data Series. (Vol.1) New York, pp1–1595

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 曹炳阳, 张梓彤. 热智能材料及其在空间热控中的应用. 物理学报, 2022, 71(1): 014401. doi: 10.7498/aps.71.20211889
    [3] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, 2022, 71(1): 018201. doi: 10.7498/aps.71.20211100
    [4] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [5] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211100
    [6] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [7] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [8] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [9] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性. 物理学报, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [10] 孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文. 基于有效介质理论的物理性能计算模型的软件实现. 物理学报, 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [11] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [12] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [13] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [14] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [15] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [16] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究. 物理学报, 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [17] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [18] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应. 物理学报, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [19] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
计量
  • 文章访问数:  7066
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-08-04
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回