-
Owing to the unique characteristics of the hollow core fiber(HCF), more and more researchers pay attention to its application. Because the mode field is mainly limited to the core region of the fiber, which results in low non-linearity, ultra-low group velocity dispersion, low temperature sensitivity, and high material damage threshold. Based on the above, the HCF possesses some attractive nonlinear applications such as in transmission of high-power laser beams, sensing, ultra-wide band low-loss transmission, pulse compression and super-continuum generation. Besides, the HCFs can be further divided into the transmitting band-gap photonic crystal fiber(PBG-PCF) and the hollow-core anti-resonant fiber(HC-ARF). Compared with the PBG-PCF, the latter has wide light guiding characteristics caused by leaking modes. According to the research in the recent year, the HC-ARF has gradually approached to the performance of the PBG-PCF in its transmission loss, showing that it has potential applications in communications, sensing, aerospace, high-power laser transmission and other fields in the future. In addition, the HC-ARF with the special light-guiding properties has also become the important photonic device in the fields of fiber filters, mode conversion, etc. In this paper, a hollow-core anti-resonance fiber is studied and its light transmission performance in the spectral range of 500–1500 nm is verified. The optical loss measured at 980 nm wavelength is about 0.32 dB/m. It is found that a 980 nm multi-mode laser beam can be converted into a single-mode one after transmitting through the hollow core fiber we designed.
-
Keywords:
- fiber optics /
- anti-resonance /
- light guide characteristics /
- mode conversion
[1] Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440
[2] Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22
[3] Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8Google Scholar
[4] Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W
[5] Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4
[6] Ballato J, Aleshkina S S, Likhachev M E, Lipatov, D S 2016 Conference on Fiber Lasers XIII -Technology, Systems, and Applications San Francisco, CA, February 15–18, 2016 p97281C
[7] 杜赫庭, 刘爱民, 曹涧秋, 潘志勇, 黄值河, 王小林, 许晓军, 陈金宝 2019 强激光与粒子束 268 10
Du H T, Liu A M, Cao J Q, Pan Z Y, Huang Z H, Wang X L, Xu X J, Chen J B 2019 High Power Laser Part. Beams 268 10
[8] Paul B K, Ahmed K, Vigneswaran D, Sen S, Islam M S 2019 Opt. Quantum Electron. 51 7Google Scholar
[9] Qin J Y, Zhu B, Du Y, Han Z H 2019 Opt. Fiber Technol. 52 101990Google Scholar
[10] 蔡伟, 郝文慧, 王舰洋, 周彦果, 刘轶铭 2021 真空电子技术 3 8
Cai W, He W H, Wang J Y, Zhou Y G, Liu Y M 2021 Vac. Electron. 3 8
[11] Stefani A, Fleming S C, Kuhlmey B T 2018 APL Photonics 3 5
[12] Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 10
[13] Huang X, Yoo S, Yong K T 2017 Sci. Rep. 7 1Google Scholar
[14] Kosolapov A F, Alagashev G K, Kolyadin A N, Pryamikov A D, Biriukov A S, Bufetov I A, Dianov E M 2016 Quantum Electron. 46 3
[15] Bradley T D, Jasion G T, Hayes J R, Chen Y, Hooper L, Sakr H, Alonso M, Taranta A, Saljoghei A, Mulvad H C, Fake M, Davidson I A K, Wheeler N V, Fokoua E N, Wei Wang, Sandoghchi S R, Richardson D J, Poletti F 2019 45th European Conference on Optical Communication (ECOC 2019) Dublin, Ireland, Sept 22–26, 2019 p4
[16] Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 1Google Scholar
[17] Yu F, Song P, Wu D K, Birks T, Bird D, Knight J 2019 APL Photonics 4 8
[18] Jasion G T, Bradley T D, Harrington K, et al. 2020 Optical Fiber Communications Conference and Exposition (OFC) San Diego, CA, Mar 08–12, 2020
[19] Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto, Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T 2018 J. Lightwave Technol. 36 1Google Scholar
[20] Markos C, Nielsen K, Bang O 2015 J. Opt. 17 10
[21] Markos C, Travers J C, Abdolvand A, Eggleton B J 2017 Rev. Mod. Phys. 89 4
[22] Fini J M, Nicholson J W, Mangan B, Meng L L, Windeler R S, Monberg E M, Desantolo A, Dimarcello F V, Mukasa K 2014 Nat. Commun. 5 5085Google Scholar
[23] Michieletto M, Lyngso J K, Jakobsen C, Laegsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7
[24] Wei C L, Kuis R A, Chenard F, Menyuk C R, Hu J 2015 Opt. Express 23 12Google Scholar
[25] Uebel P, Gunendi M, Frosz M H, Ahmed G, Edavalath N N, Menard J M, Russell P S J 2016 Opt. Lett. 41 9Google Scholar
[26] Kumar A, Saini T S, Naik K D, Sinha R K 2016 Appl. Opt. 55 19
[27] Kabir S, Razzak S M A 2018 Optik 162 206Google Scholar
[28] Kabir S, Razzak S M A 2019 Photonics Nanostruct. Fundam. Appl. 30 1
[29] COMSOL Multiphysics®, Consultants C http: //https://www.comsol.com/paper/research-of-dispersion-characters-in-hexagonal-photonic-crystal-fiber-based-on-a-20011 [2014]
[30] 贺平, 徐敏 1999 北京工业大学学报 4 1
He P, Xu M 1999 J. Beijing Univ. Technol. 4 1
-
图 12 空芯反谐振光纤多模与单模转化效率图及980 nm单模激光模式 (a) 光纤多模转单模效率图; (b), (c) 经锥形光纤模式多模激光模式图; (d), (e) 经空芯反谐振光纤激光模式图
Fig. 12. Multi-mode and single-mode conversion efficiency of hollow core anti-resonance fiber: (a) Efficiency of fiber from multi-mode to single-mode; (b), (c) multi-mode laser modes after tapered fiber mode; (d), (e) laser patterns of hollow core anti-resonant fiber.
表 1 空芯反谐振光纤直径, 包层壁厚、包层圆心距和反谐振窗口参数
Table 1. Hollow core anti-resonant fiber diameter, cladding wall thickness, cladding center distance and anti-resonance window parameters.
纤芯直径 包层壁厚 包层圆心距 反谐振窗口 D/μm t/nm Λ/μm $ {\lambda }_{\mathrm{\gamma }} $/nm(实际测量)
(t = 500 nm)$ {\lambda }_{\propto } $/nm(理论设计)
(t = 466 nm)30 500 21.4 1024 (m = 1)
582 (m = 2)
395 (m = 3)
296 (m = 4)979 (m = 1)
552 (m = 2)
368 (m = 3)
276 (m = 4)表 2 未经过光纤传输后的光束质量测量参数
Table 2. Measurement parameters of beam quality without optical fiber transmission.
参数
测量组ƒ = 0.3 ƒ = 0.4 ƒ = 0.45 ƒ = 0.5 ƒ = 0.6 s = 0.7 ƒ/mm 0.3 0.4 0.45 0.5 0.6 0.7 ω/mm 1.1 0.95 0.92 0.78 0.39 0.29 表 3 经过光纤传输后的光束质量测量参数
Table 3. Measurement parameters of beam quality through by optical fiber transmission.
参数
测量组ƒ = 1.2 ƒ = 1.3 ƒ = 1.5 ƒ = 1.6 ƒ = 1.8 s = 2.3 ƒ/mm 1.2 1.3 1.5 1.6 1.8 2.3 ω/mm 1.09 0.96 0.9 0.73 0.63 0.4 -
[1] Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440
[2] Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22
[3] Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8Google Scholar
[4] Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W
[5] Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4
[6] Ballato J, Aleshkina S S, Likhachev M E, Lipatov, D S 2016 Conference on Fiber Lasers XIII -Technology, Systems, and Applications San Francisco, CA, February 15–18, 2016 p97281C
[7] 杜赫庭, 刘爱民, 曹涧秋, 潘志勇, 黄值河, 王小林, 许晓军, 陈金宝 2019 强激光与粒子束 268 10
Du H T, Liu A M, Cao J Q, Pan Z Y, Huang Z H, Wang X L, Xu X J, Chen J B 2019 High Power Laser Part. Beams 268 10
[8] Paul B K, Ahmed K, Vigneswaran D, Sen S, Islam M S 2019 Opt. Quantum Electron. 51 7Google Scholar
[9] Qin J Y, Zhu B, Du Y, Han Z H 2019 Opt. Fiber Technol. 52 101990Google Scholar
[10] 蔡伟, 郝文慧, 王舰洋, 周彦果, 刘轶铭 2021 真空电子技术 3 8
Cai W, He W H, Wang J Y, Zhou Y G, Liu Y M 2021 Vac. Electron. 3 8
[11] Stefani A, Fleming S C, Kuhlmey B T 2018 APL Photonics 3 5
[12] Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 10
[13] Huang X, Yoo S, Yong K T 2017 Sci. Rep. 7 1Google Scholar
[14] Kosolapov A F, Alagashev G K, Kolyadin A N, Pryamikov A D, Biriukov A S, Bufetov I A, Dianov E M 2016 Quantum Electron. 46 3
[15] Bradley T D, Jasion G T, Hayes J R, Chen Y, Hooper L, Sakr H, Alonso M, Taranta A, Saljoghei A, Mulvad H C, Fake M, Davidson I A K, Wheeler N V, Fokoua E N, Wei Wang, Sandoghchi S R, Richardson D J, Poletti F 2019 45th European Conference on Optical Communication (ECOC 2019) Dublin, Ireland, Sept 22–26, 2019 p4
[16] Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 1Google Scholar
[17] Yu F, Song P, Wu D K, Birks T, Bird D, Knight J 2019 APL Photonics 4 8
[18] Jasion G T, Bradley T D, Harrington K, et al. 2020 Optical Fiber Communications Conference and Exposition (OFC) San Diego, CA, Mar 08–12, 2020
[19] Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto, Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T 2018 J. Lightwave Technol. 36 1Google Scholar
[20] Markos C, Nielsen K, Bang O 2015 J. Opt. 17 10
[21] Markos C, Travers J C, Abdolvand A, Eggleton B J 2017 Rev. Mod. Phys. 89 4
[22] Fini J M, Nicholson J W, Mangan B, Meng L L, Windeler R S, Monberg E M, Desantolo A, Dimarcello F V, Mukasa K 2014 Nat. Commun. 5 5085Google Scholar
[23] Michieletto M, Lyngso J K, Jakobsen C, Laegsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7
[24] Wei C L, Kuis R A, Chenard F, Menyuk C R, Hu J 2015 Opt. Express 23 12Google Scholar
[25] Uebel P, Gunendi M, Frosz M H, Ahmed G, Edavalath N N, Menard J M, Russell P S J 2016 Opt. Lett. 41 9Google Scholar
[26] Kumar A, Saini T S, Naik K D, Sinha R K 2016 Appl. Opt. 55 19
[27] Kabir S, Razzak S M A 2018 Optik 162 206Google Scholar
[28] Kabir S, Razzak S M A 2019 Photonics Nanostruct. Fundam. Appl. 30 1
[29] COMSOL Multiphysics®, Consultants C http: //https://www.comsol.com/paper/research-of-dispersion-characters-in-hexagonal-photonic-crystal-fiber-based-on-a-20011 [2014]
[30] 贺平, 徐敏 1999 北京工业大学学报 4 1
He P, Xu M 1999 J. Beijing Univ. Technol. 4 1
计量
- 文章访问数: 5546
- PDF下载量: 160
- 被引次数: 0