搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带空芯反谐振光纤的制备及其模式转换应用研究

杨家濠 张傲岩 夏长明 邓志鹏 刘建涛 黄卓元 康嘉健 曾浩然 蒋仁杰 莫志峰 侯峙云 周桂耀

引用本文:
Citation:

窄带空芯反谐振光纤的制备及其模式转换应用研究

杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀

Preparation and mode conversion application of narrowband hollow-core anti-resonant fiber

Yang Jia-Hao, Zhang Ao-Yan, Xia Chang-Ming, Deng Zhi-Peng, Liu Jian-Tao, Huang Zhuo-Yuan, Kang Jia-Jian, Zeng Hao-Ran, Jiang Ren-Jie, Mo Zhi-Feng, Hou Zhi-Yun, Zhou Gui-Yao
PDF
HTML
导出引用
  • 空芯反谐振光纤由于其优异的光学特性, 如低非线性、超低群速度色散、低温度敏感性和高损伤阈值等, 使其在大功率激光传输、量子通信、传感、航空航天等多个领域有着潜在的应用, 成为未来最具发展潜力的特种光纤. 由于空芯反谐振光纤能够将99.9%以上光场限制在光纤的空芯区域中, 这也使其成为光纤滤波器、模式转换等领域的重要光子器件. 本文针对980 nm单模激光器的迫切需求, 研制了一种应用于980 nm多模激光转980 nm单模激光的空芯反谐振光纤, 并对其应用进行了实验验证.
    Owing to the unique characteristics of the hollow core fiber(HCF), more and more researchers pay attention to its application. Because the mode field is mainly limited to the core region of the fiber, which results in low non-linearity, ultra-low group velocity dispersion, low temperature sensitivity, and high material damage threshold. Based on the above, the HCF possesses some attractive nonlinear applications such as in transmission of high-power laser beams, sensing, ultra-wide band low-loss transmission, pulse compression and super-continuum generation. Besides, the HCFs can be further divided into the transmitting band-gap photonic crystal fiber(PBG-PCF) and the hollow-core anti-resonant fiber(HC-ARF). Compared with the PBG-PCF, the latter has wide light guiding characteristics caused by leaking modes. According to the research in the recent year, the HC-ARF has gradually approached to the performance of the PBG-PCF in its transmission loss, showing that it has potential applications in communications, sensing, aerospace, high-power laser transmission and other fields in the future. In addition, the HC-ARF with the special light-guiding properties has also become the important photonic device in the fields of fiber filters, mode conversion, etc. In this paper, a hollow-core anti-resonance fiber is studied and its light transmission performance in the spectral range of 500–1500 nm is verified. The optical loss measured at 980 nm wavelength is about 0.32 dB/m. It is found that a 980 nm multi-mode laser beam can be converted into a single-mode one after transmitting through the hollow core fiber we designed.
      通信作者: 夏长明, xiacmm@126.com
    • 基金项目: 广东重点领域研发计划(批准号: 2018B010114002)和国家重点研发计划(批准号: 2018YFB0407403)资助的课题.
      Corresponding author: Xia Chang-Ming, xiacmm@126.com
    • Funds: Project supported by the Research and Development Program in Key Area of Guangdong Province, China (Grant No. 2018B010114002), and the Key Research and Development Program of China (Grant No. 2018YFB0407403).
    [1]

    Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440

    [2]

    Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22

    [3]

    Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8Google Scholar

    [4]

    Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W

    [5]

    Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4

    [6]

    Ballato J, Aleshkina S S, Likhachev M E, Lipatov, D S 2016 Conference on Fiber Lasers XIII -Technology, Systems, and Applications San Francisco, CA, February 15–18, 2016 p97281C

    [7]

    杜赫庭, 刘爱民, 曹涧秋, 潘志勇, 黄值河, 王小林, 许晓军, 陈金宝 2019 强激光与粒子束 268 10

    Du H T, Liu A M, Cao J Q, Pan Z Y, Huang Z H, Wang X L, Xu X J, Chen J B 2019 High Power Laser Part. Beams 268 10

    [8]

    Paul B K, Ahmed K, Vigneswaran D, Sen S, Islam M S 2019 Opt. Quantum Electron. 51 7Google Scholar

    [9]

    Qin J Y, Zhu B, Du Y, Han Z H 2019 Opt. Fiber Technol. 52 101990Google Scholar

    [10]

    蔡伟, 郝文慧, 王舰洋, 周彦果, 刘轶铭 2021 真空电子技术 3 8

    Cai W, He W H, Wang J Y, Zhou Y G, Liu Y M 2021 Vac. Electron. 3 8

    [11]

    Stefani A, Fleming S C, Kuhlmey B T 2018 APL Photonics 3 5

    [12]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 10

    [13]

    Huang X, Yoo S, Yong K T 2017 Sci. Rep. 7 1Google Scholar

    [14]

    Kosolapov A F, Alagashev G K, Kolyadin A N, Pryamikov A D, Biriukov A S, Bufetov I A, Dianov E M 2016 Quantum Electron. 46 3

    [15]

    Bradley T D, Jasion G T, Hayes J R, Chen Y, Hooper L, Sakr H, Alonso M, Taranta A, Saljoghei A, Mulvad H C, Fake M, Davidson I A K, Wheeler N V, Fokoua E N, Wei Wang, Sandoghchi S R, Richardson D J, Poletti F 2019 45th European Conference on Optical Communication (ECOC 2019) Dublin, Ireland, Sept 22–26, 2019 p4

    [16]

    Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 1Google Scholar

    [17]

    Yu F, Song P, Wu D K, Birks T, Bird D, Knight J 2019 APL Photonics 4 8

    [18]

    Jasion G T, Bradley T D, Harrington K, et al. 2020 Optical Fiber Communications Conference and Exposition (OFC) San Diego, CA, Mar 08–12, 2020

    [19]

    Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto, Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T 2018 J. Lightwave Technol. 36 1Google Scholar

    [20]

    Markos C, Nielsen K, Bang O 2015 J. Opt. 17 10

    [21]

    Markos C, Travers J C, Abdolvand A, Eggleton B J 2017 Rev. Mod. Phys. 89 4

    [22]

    Fini J M, Nicholson J W, Mangan B, Meng L L, Windeler R S, Monberg E M, Desantolo A, Dimarcello F V, Mukasa K 2014 Nat. Commun. 5 5085Google Scholar

    [23]

    Michieletto M, Lyngso J K, Jakobsen C, Laegsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7

    [24]

    Wei C L, Kuis R A, Chenard F, Menyuk C R, Hu J 2015 Opt. Express 23 12Google Scholar

    [25]

    Uebel P, Gunendi M, Frosz M H, Ahmed G, Edavalath N N, Menard J M, Russell P S J 2016 Opt. Lett. 41 9Google Scholar

    [26]

    Kumar A, Saini T S, Naik K D, Sinha R K 2016 Appl. Opt. 55 19

    [27]

    Kabir S, Razzak S M A 2018 Optik 162 206Google Scholar

    [28]

    Kabir S, Razzak S M A 2019 Photonics Nanostruct. Fundam. Appl. 30 1

    [29]

    COMSOL Multiphysics®, Consultants C http: //https://www.comsol.com/paper/research-of-dispersion-characters-in-hexagonal-photonic-crystal-fiber-based-on-a-20011 [2014]

    [30]

    贺平, 徐敏 1999 北京工业大学学报 4 1

    He P, Xu M 1999 J. Beijing Univ. Technol. 4 1

  • 图 1  空芯反谐振光纤端面图[20]

    Fig. 1.  Cross-section of hollow core anti-resonant fiber[20].

    图 2  空芯反谐振光纤导光原理图[21] (a)反谐振; (b)谐振

    Fig. 2.  Light guiding principles of hollow core antiresonant fiber[21]: (a) Antiresonant; (b) resonant.

    图 3  光纤设计结构与模场分析图 (a) 光纤结构设计图; (b) 光纤模场分析图

    Fig. 3.  Fiber design structure and mode field analysis: (a) Optical fiber structure design drawing; (b) optical fiber mode field analysis diagram.

    图 4  光纤x轴和y轴方向弯曲时的模场分布图 (a) 光纤沿x轴方向弯曲模场分布图; (b) 光纤沿y轴方向弯曲模场分布图

    Fig. 4.  Mode field distribution of optical fiber bending along x- and y- axis: (a) The distribution of bending mode field of optical fiber along the x-axis; (b) the distribution of bending mode field of optical fiber along the y-axis.

    图 5  光纤沿x轴和y轴方向弯曲损耗图 (a) 光纤沿x轴方向弯曲损耗图; (b) 光纤沿y轴方向弯曲损耗图

    Fig. 5.  Bending loss diagram of optical fiber along x- and y-axis: (a) Fiber bending loss along the x-axis; (b) fiber bending loss along the y-axis.

    图 6  光纤有效折射率

    Fig. 6.  Effective refractive index of optical fiber.

    图 7  光纤色散图

    Fig. 7.  Dispersion diagram of optical fiber.

    图 8  空芯反谐振光纤SEM端面图

    Fig. 8.  SEM cross-section of the hollow core anti-resonance fiber.

    图 9  空芯反谐振光纤传输谱图

    Fig. 9.  Transmission spectrum of hollow core anti-resonance fiber.

    图 10  空芯反谐振光纤的传输损耗图

    Fig. 10.  Transmission loss diagram of hollow core anti-resonance fiber.

    图 11  980 nm多模光纤激光器转单模激光装置示意图

    Fig. 11.  Schematic diagram of 980 nm multi-mode fiber laser to single-mode laser device.

    图 12  空芯反谐振光纤多模与单模转化效率图及980 nm单模激光模式 (a) 光纤多模转单模效率图; (b), (c) 经锥形光纤模式多模激光模式图; (d), (e) 经空芯反谐振光纤激光模式图

    Fig. 12.  Multi-mode and single-mode conversion efficiency of hollow core anti-resonance fiber: (a) Efficiency of fiber from multi-mode to single-mode; (b), (c) multi-mode laser modes after tapered fiber mode; (d), (e) laser patterns of hollow core anti-resonant fiber.

    表 1  空芯反谐振光纤直径, 包层壁厚、包层圆心距和反谐振窗口参数

    Table 1.  Hollow core anti-resonant fiber diameter, cladding wall thickness, cladding center distance and anti-resonance window parameters.

    纤芯直径包层壁厚包层圆心距反谐振窗口
    D/μmt/nmΛ/μm$ {\lambda }_{\mathrm{\gamma }} $/nm(实际测量)
    (t = 500 nm)
    $ {\lambda }_{\propto } $/nm(理论设计)
    (t = 466 nm)
    3050021.41024 (m = 1)
    582 (m = 2)
    395 (m = 3)
    296 (m = 4)
    979 (m = 1)
    552 (m = 2)
    368 (m = 3)
    276 (m = 4)
    下载: 导出CSV

    表 2  未经过光纤传输后的光束质量测量参数

    Table 2.  Measurement parameters of beam quality without optical fiber transmission.

    参数
    测量组
    ƒ = 0.3ƒ = 0.4ƒ = 0.45ƒ = 0.5ƒ = 0.6s = 0.7
    ƒ/mm0.30.40.450.50.60.7
    ω/mm1.10.950.920.780.390.29
    下载: 导出CSV

    表 3  经过光纤传输后的光束质量测量参数

    Table 3.  Measurement parameters of beam quality through by optical fiber transmission.

    参数
    测量组
    ƒ = 1.2ƒ = 1.3ƒ = 1.5ƒ = 1.6ƒ = 1.8s = 2.3
    ƒ/mm1.21.31.51.61.82.3
    ω/mm1.090.960.90.730.630.4
    下载: 导出CSV
  • [1]

    Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440

    [2]

    Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22

    [3]

    Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8Google Scholar

    [4]

    Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W

    [5]

    Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4

    [6]

    Ballato J, Aleshkina S S, Likhachev M E, Lipatov, D S 2016 Conference on Fiber Lasers XIII -Technology, Systems, and Applications San Francisco, CA, February 15–18, 2016 p97281C

    [7]

    杜赫庭, 刘爱民, 曹涧秋, 潘志勇, 黄值河, 王小林, 许晓军, 陈金宝 2019 强激光与粒子束 268 10

    Du H T, Liu A M, Cao J Q, Pan Z Y, Huang Z H, Wang X L, Xu X J, Chen J B 2019 High Power Laser Part. Beams 268 10

    [8]

    Paul B K, Ahmed K, Vigneswaran D, Sen S, Islam M S 2019 Opt. Quantum Electron. 51 7Google Scholar

    [9]

    Qin J Y, Zhu B, Du Y, Han Z H 2019 Opt. Fiber Technol. 52 101990Google Scholar

    [10]

    蔡伟, 郝文慧, 王舰洋, 周彦果, 刘轶铭 2021 真空电子技术 3 8

    Cai W, He W H, Wang J Y, Zhou Y G, Liu Y M 2021 Vac. Electron. 3 8

    [11]

    Stefani A, Fleming S C, Kuhlmey B T 2018 APL Photonics 3 5

    [12]

    Yu F, Wadsworth W J, Knight J C 2012 Opt. Express 20 10

    [13]

    Huang X, Yoo S, Yong K T 2017 Sci. Rep. 7 1Google Scholar

    [14]

    Kosolapov A F, Alagashev G K, Kolyadin A N, Pryamikov A D, Biriukov A S, Bufetov I A, Dianov E M 2016 Quantum Electron. 46 3

    [15]

    Bradley T D, Jasion G T, Hayes J R, Chen Y, Hooper L, Sakr H, Alonso M, Taranta A, Saljoghei A, Mulvad H C, Fake M, Davidson I A K, Wheeler N V, Fokoua E N, Wei Wang, Sandoghchi S R, Richardson D J, Poletti F 2019 45th European Conference on Optical Communication (ECOC 2019) Dublin, Ireland, Sept 22–26, 2019 p4

    [16]

    Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X, Wang P 2018 Nat. Commun. 9 1Google Scholar

    [17]

    Yu F, Song P, Wu D K, Birks T, Bird D, Knight J 2019 APL Photonics 4 8

    [18]

    Jasion G T, Bradley T D, Harrington K, et al. 2020 Optical Fiber Communications Conference and Exposition (OFC) San Diego, CA, Mar 08–12, 2020

    [19]

    Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto, Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T 2018 J. Lightwave Technol. 36 1Google Scholar

    [20]

    Markos C, Nielsen K, Bang O 2015 J. Opt. 17 10

    [21]

    Markos C, Travers J C, Abdolvand A, Eggleton B J 2017 Rev. Mod. Phys. 89 4

    [22]

    Fini J M, Nicholson J W, Mangan B, Meng L L, Windeler R S, Monberg E M, Desantolo A, Dimarcello F V, Mukasa K 2014 Nat. Commun. 5 5085Google Scholar

    [23]

    Michieletto M, Lyngso J K, Jakobsen C, Laegsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7

    [24]

    Wei C L, Kuis R A, Chenard F, Menyuk C R, Hu J 2015 Opt. Express 23 12Google Scholar

    [25]

    Uebel P, Gunendi M, Frosz M H, Ahmed G, Edavalath N N, Menard J M, Russell P S J 2016 Opt. Lett. 41 9Google Scholar

    [26]

    Kumar A, Saini T S, Naik K D, Sinha R K 2016 Appl. Opt. 55 19

    [27]

    Kabir S, Razzak S M A 2018 Optik 162 206Google Scholar

    [28]

    Kabir S, Razzak S M A 2019 Photonics Nanostruct. Fundam. Appl. 30 1

    [29]

    COMSOL Multiphysics®, Consultants C http: //https://www.comsol.com/paper/research-of-dispersion-characters-in-hexagonal-photonic-crystal-fiber-based-on-a-20011 [2014]

    [30]

    贺平, 徐敏 1999 北京工业大学学报 4 1

    He P, Xu M 1999 J. Beijing Univ. Technol. 4 1

  • [1] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输. 物理学报, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [3] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [4] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211299
    [5] 陈法喜, 赵侃, 李博, 刘博, 郭新兴, 孔维成, 陈国超, 郭宝龙, 刘涛, 张首刚. 基于1085 km实地光纤链路的双波长光纤时间同步研究. 物理学报, 2021, 70(7): 070702. doi: 10.7498/aps.70.20201277
    [6] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [7] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究. 物理学报, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [8] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [9] 丁伟, 汪滢莹, 高寿飞, 洪奕峰, 王璞. 高性能反谐振空芯光纤导光机理与实验制作研究进展. 物理学报, 2018, 67(12): 124201. doi: 10.7498/aps.67.20180724
    [10] 陈法喜, 赵侃, 周旭, 刘涛, 张首刚. 长距离多站点高精度光纤时间同步. 物理学报, 2017, 66(20): 200701. doi: 10.7498/aps.66.200701
    [11] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [12] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [14] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [15] 乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟. 高精度准分布式光纤光栅地震检波解调系统的研究. 物理学报, 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [16] 王静, 张晨芳, 康泽新, 孙将, 郑斯文, 林桢, 王春灿, 简水生. 多偏振控制高双折射光纤环形镜输出特性的理论和实验研究. 物理学报, 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [17] 张 鹏, 赵建林, 杨德兴, 王美蓉, 孙一栋. LiNbO3:Fe晶体中光写入平面光波导的导光特性研究. 物理学报, 2004, 53(10): 3369-3374. doi: 10.7498/aps.53.3369
    [18] 余恬, 王福勋. 光斑的形状因子及其在光纤定解问题中的应用. 物理学报, 2002, 51(9): 1907-1912. doi: 10.7498/aps.51.1907
    [19] 余寿绵, 余恬. 索末菲球面波公式的协变形式及其在光纤理论中的应用. 物理学报, 2001, 50(6): 1097-1102. doi: 10.7498/aps.50.1097
    [20] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析. 物理学报, 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
计量
  • 文章访问数:  5546
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 修回日期:  2022-03-17
  • 上网日期:  2022-06-28
  • 刊出日期:  2022-07-05

/

返回文章
返回