搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石氮-空位色心单电子自旋的电场驱动相干控制

吴建冬 程智 叶翔宇 李兆凯 王鹏飞 田长麟 陈宏伟

引用本文:
Citation:

金刚石氮-空位色心单电子自旋的电场驱动相干控制

吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟

Coherent electrical control of single electron spin in diamond nitrogen-vacancy center

Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei
PDF
HTML
导出引用
  • 金刚石氮-空位(nitrogen-vacancy, NV)色心量子体系因在室温条件下具有可实现单自旋寻址与操控、长量子相干时间等独特优势, 在固态量子计算、量子精密测量等领域展现了巨大的应用潜力, 其中单自旋的精确操控技术对于NV色心应用的发展尤为关键. NV色心量子体系中常用的自旋操控方法都是通过共振的交变磁场来驱动和操控NV色心电子自旋. 本文开展了利用交变电场对NV色心电子自旋进行调控的技术研究. 通过电极所产生的交变电场成功驱动了NV色心自旋在$|m_{\rm{s}}=-1\rangle$$|m_{\rm{s}}=+1\rangle$两个$\Delta m_{\rm{s}} =\pm2$的磁禁戒能级间的跃迁, 并观测到受控自旋在相关能级的布居度周期性变化而展现出的Rabi振荡现象. 进一步的研究表明, 电场驱动Rabi振荡的频率受驱动电场功率的调控, 与驱动电场的共振频率无直接关系. 将自旋电控制技术与磁控制技术方法相结合, 能够实现对NV色心3个自旋能级间直接跃迁的全操控. 自旋电控制技术的发展将进一步推动NV色心量子体系在量子模拟、量子计算、电磁场的精密测量等领域研究和应用的发展.
    The nitrogen-vacancy (NV) color center quantum system in diamond has shown great application potential in the fields of solid-state quantum computing and quantum precision measurement because of its unique advantages such as single-spin addressing and manipulation and long quantum coherence time at room temperature. The precise manipulation technology of single spin is particularly important for the development of the application of NV center. The common spin manipulation methods used in NV center quantum system are to drive and manipulate the electron spin by resonant alternating magnetic field. In recent years, the electrical control of quantum spin has attracted extensive attention. In this paper, using the alternating electric field to control the electron spin of NV center is studied. The alternating electric field generated by the electrode successfully drives the Rabi oscillation of the NV center spin between the $\Delta m_{\rm{s}}=\pm2$ magnetic-dipole forbidden energy levels of $|m_{\rm{s}}=-1\rangle$ and $|m_{\rm{s}}=+1\rangle$. Further studies show that the frequency of the electrically driven Rabi oscillation is controlled by the power of the driven electric field but independent of the resonant frequency of the electric field. The combination of spin electric control and magnetic control technology can realize the full manipulation of the direct transition among the three spin energy levels of NV center, thus promoting the development of the researches and applications of NV quantum system in the fields of quantum simulation, quantum computing, precision measurement of electromagnetic field, etc.
      通信作者: 田长麟, cltian@ustc.edu.cn ; 陈宏伟, hwchen@hmfl.ac.cn
    • 基金项目: 中国科学院合肥大科学中心重点研发项目(批准号: 2021HSC-KPRD003)和国家自然科学基金(批准号: 92165108)资助的课题
      Corresponding author: Tian Chang-Lin, cltian@ustc.edu.cn ; Chen Hong-Wei, hwchen@hmfl.ac.cn
    • Funds: Project supported by Hefei Science Center, Chinese Academy of Sciences (Grant No. 2021HSC-KPRD003) and the National Natural Science Foundation of China (Grant No. 92165108)
    [1]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, vonBorczyskowski C 1997 Science 276 2012Google Scholar

    [2]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar

    [3]

    刘刚钦, 邢健, 潘新宇 2018 物理学报 67 120302Google Scholar

    Liu G Q, Xing J, Pan X Y 2018 Acta Phys. Sin. 67 120302Google Scholar

    [4]

    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Mater. 8 383Google Scholar

    [5]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat. Commun. 25 8748Google Scholar

    [6]

    Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbruggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P, Wrachtrup J 2014 Nature 506 204Google Scholar

    [7]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [8]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [9]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810Google Scholar

    [10]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X, Duan C K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [11]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [12]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [13]

    Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [14]

    Dolde F, Doherty M W, Michl J, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Neumann P, Jelezko F, Manson N B, Wrachtrup J 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [15]

    Michl J, Steiner J, Denisenko A, Bulau A, Zimmermann A, Nakamura K, Sumiya H, Onoda S, Neumann P, Isoya J, Wrachtrup J 2019 Nano Lett. 19 4904Google Scholar

    [16]

    Li R, Kong F, Zhao P J, Cheng Z, Qin Z Y, Wang M Q, Zhang Q, Wang P f, Wang Y, Shi F Z, Du J F 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [17]

    Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J, Doherty M W 2021 Nano Lett. 21 2962Google Scholar

    [18]

    Bian K, Zheng W T, Zeng X Z, Chen X K, Stoehr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457Google Scholar

    [19]

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [20]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [21]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [22]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [23]

    Choi J, Zhou H, Landig R, Wu H-Y, Yu X, Von Stetina S E, Kucsko G, Mango S, Needleman D J, Samuel A D T, Maurer P C, Park H, Lukin M D 2020 P. Nat. Acad. Sci. USA 117 14636Google Scholar

    [24]

    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E 2020 Science Advances 6 37Google Scholar

    [25]

    Mueller C, Kong X, Cai J M, Melentijevic K, Stacey A, Markham M, Twitchen D, Isoya J, Pezzagna S, Meijer J, Du J F, Plenio M B, Naydenov B, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4703Google Scholar

    [26]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430Google Scholar

    [27]

    Klimov P V, Falk A L, Buckley B B, Awschalom D D 2014 Phys. Rev. Lett. 112 187601Google Scholar

    [28]

    Asaad S, Mourik V, Joecker B, Johnson M A I, Baczewski A D, Firgau H R, Madzik M T, Schmitt V, Pla J J, Hudson F E, Itoh K M, McCallum J C, Dzurak A S, Laucht A, Morello A 2020 Nature 579 205Google Scholar

    [29]

    Yang B, Murooka T, Mizuno K, Kim K, Kato H, Makino T, Ogura M, Yamasaki S, Schmidt M E, Mizuta H, Yacoby A, Hatano M, Iwasaki T 2020 Phys. Rev. Appl. 14 044049Google Scholar

    [30]

    Loubser J, van Wyk J 1977 Diamond Research 9 11

    [31]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [32]

    Vanoort E, Glasbeek M 1990 Chemical Physics Letters 168 529Google Scholar

    [33]

    Rabeau J R, Reichart P, Tamanyan G, Jamieson D N, Prawer S, Jelezko F, Gaebel T, Popa I, Domhan M, Wrachtrup J 2006 Appl. Phys. Lett. 88 023113Google Scholar

    [34]

    Liu P, Yen R, Bloembergen N 1978 IEEE J. Quantum Elect. 14 574Google Scholar

  • 图 1  (a) NV色心结构图; (b) 存在轴向磁场$B_{z}$下NV色心的基态能级图, $|\uparrow \rangle$$|\downarrow \rangle$代表$^{15}{\rm{N}}$核自旋朝向; 黄色和蓝色箭头分别代表$\Delta m_{{\rm{s}}}=\pm 1$跃迁和$\Delta m_{{\rm{s}}}=\pm 2$跃迁

    Fig. 1.  (a) Structure diagram of the NV center; (b) energy level diagram for the NV ground-state spin in the presence of an axial magnetic field $B_{z}$, $|\uparrow \rangle$ and $|\downarrow \rangle$ represent the spin orientation of $^{15}{\rm{N}}$; $\Delta m_{{\rm{s}}} = \pm 1$ transitions (yellow arrows) and the $\Delta m_{{\rm{s}}} = \pm 2$ transition (blue arrows) are indicated.

    图 2  (a)电极和微波线的结构设计简图; (b) 激光共聚焦扫描NV色心的荧光图

    Fig. 2.  (a) Structural design diagram of electrode and microwave line; (b) fluorescence diagram of NV centers scanned by a laser scanning confocal microscope.

    图 3  (a) ODMR的频率谱; (b) NV色心电子自旋的相干时间测量. $ ^{12}{\rm{C}}$纯化延长了电子自旋的相干时间, 弛豫时间$T_{2}$经指数衰减函数${\rm{exp}}[-(2 \tau/T_{2})^2]$(红线)拟合约为$1.6\ {\rm{ms}}$

    Fig. 3.  (a) The frequency spectrum of ODMR; (b) coherent time measurement of electron spin in NV center. The purification of $ ^{12}{\rm{C}}$ prolongs the coherence time of electron spin, and the relaxation time $T_{2}$ is estimated to be $1.6\ {\rm{ms}}$ through the exponential attenuation function ${\rm{exp}}[-(2 \tau/T_{2})^2]$ (red line).

    图 4  (a) EODMR脉冲序列及自旋跃迁示意图; (b) EODMR的共振峰谱图

    Fig. 4.  (a) EODMR pulse sequence and spin transition diagram; (b) the resonance peak spectrum of EODMR.

    图 5  (a) ERabi脉冲序列; (b) 在不同电场驱动功率的作用下, NV色心电子自旋的ERabi振荡谱

    Fig. 5.  (a) ERabi pulse sequence; (b) ERabi oscillatory spectrum of electron spin in NV center under the action of different electric field driving power.

    图 6  不同共振频率下电场功率与电子自旋的 ERabi 振荡频率的关系

    Fig. 6.  Relationship between electric field power and ERabi oscillation frequency of electron spins at different resonance frequencies.

  • [1]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, vonBorczyskowski C 1997 Science 276 2012Google Scholar

    [2]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar

    [3]

    刘刚钦, 邢健, 潘新宇 2018 物理学报 67 120302Google Scholar

    Liu G Q, Xing J, Pan X Y 2018 Acta Phys. Sin. 67 120302Google Scholar

    [4]

    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Mater. 8 383Google Scholar

    [5]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat. Commun. 25 8748Google Scholar

    [6]

    Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbruggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P, Wrachtrup J 2014 Nature 506 204Google Scholar

    [7]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [8]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [9]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810Google Scholar

    [10]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X, Duan C K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [11]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [12]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [13]

    Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [14]

    Dolde F, Doherty M W, Michl J, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Neumann P, Jelezko F, Manson N B, Wrachtrup J 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [15]

    Michl J, Steiner J, Denisenko A, Bulau A, Zimmermann A, Nakamura K, Sumiya H, Onoda S, Neumann P, Isoya J, Wrachtrup J 2019 Nano Lett. 19 4904Google Scholar

    [16]

    Li R, Kong F, Zhao P J, Cheng Z, Qin Z Y, Wang M Q, Zhang Q, Wang P f, Wang Y, Shi F Z, Du J F 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [17]

    Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J, Doherty M W 2021 Nano Lett. 21 2962Google Scholar

    [18]

    Bian K, Zheng W T, Zeng X Z, Chen X K, Stoehr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457Google Scholar

    [19]

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [20]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [21]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [22]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [23]

    Choi J, Zhou H, Landig R, Wu H-Y, Yu X, Von Stetina S E, Kucsko G, Mango S, Needleman D J, Samuel A D T, Maurer P C, Park H, Lukin M D 2020 P. Nat. Acad. Sci. USA 117 14636Google Scholar

    [24]

    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E 2020 Science Advances 6 37Google Scholar

    [25]

    Mueller C, Kong X, Cai J M, Melentijevic K, Stacey A, Markham M, Twitchen D, Isoya J, Pezzagna S, Meijer J, Du J F, Plenio M B, Naydenov B, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4703Google Scholar

    [26]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430Google Scholar

    [27]

    Klimov P V, Falk A L, Buckley B B, Awschalom D D 2014 Phys. Rev. Lett. 112 187601Google Scholar

    [28]

    Asaad S, Mourik V, Joecker B, Johnson M A I, Baczewski A D, Firgau H R, Madzik M T, Schmitt V, Pla J J, Hudson F E, Itoh K M, McCallum J C, Dzurak A S, Laucht A, Morello A 2020 Nature 579 205Google Scholar

    [29]

    Yang B, Murooka T, Mizuno K, Kim K, Kato H, Makino T, Ogura M, Yamasaki S, Schmidt M E, Mizuta H, Yacoby A, Hatano M, Iwasaki T 2020 Phys. Rev. Appl. 14 044049Google Scholar

    [30]

    Loubser J, van Wyk J 1977 Diamond Research 9 11

    [31]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [32]

    Vanoort E, Glasbeek M 1990 Chemical Physics Letters 168 529Google Scholar

    [33]

    Rabeau J R, Reichart P, Tamanyan G, Jamieson D N, Prawer S, Jelezko F, Gaebel T, Popa I, Domhan M, Wrachtrup J 2006 Appl. Phys. Lett. 88 023113Google Scholar

    [34]

    Liu P, Yen R, Bloembergen N 1978 IEEE J. Quantum Elect. 14 574Google Scholar

  • [1] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术. 物理学报, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [2] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [3] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [4] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [6] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [7] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [8] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [9] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [10] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [13] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [14] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [15] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [16] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [17] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [18] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [19] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  4167
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-03-27
  • 上网日期:  2022-05-24
  • 刊出日期:  2022-06-05

/

返回文章
返回