搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于串联哑铃型微环谐振腔的二维相干光码分多址编解码器

吉喆 严英占 贾大功

引用本文:
Citation:

基于串联哑铃型微环谐振腔的二维相干光码分多址编解码器

吉喆, 严英占, 贾大功

Two-dimensional coherent optical en/decoder based on serially coupled dumbbell microring resonator

Ji Zhe, Yan Ying-Zhan, Jia Da-Gong
PDF
HTML
导出引用
  • 利用微环谐振腔阵列进行光码分多址编解码过程中, 微环谐振腔反射谱的自由频谱宽度(FSR)范围制约该系统用户容量的提升. 本文提出了一种新型的基于游标效应的串联哑铃型微环谐振腔光编解码器. 利用Matlab建立了半径分别为40 μm-30 μm-40 μm的哑铃型微环谐振腔光编解码器模型. 详细分析了光反射谱伪模抑制与耦合系数的关系, 研究了耦合系数、码片速率对串联哑铃型微环谐振腔光编解码器性能的影响. 结果表明, 与半径分别为40 μm-40 μm-40 μm的传统串联微环谐振腔编解码器相比, 哑铃型微腔编解码器FSR值扩大了4倍. 理想情况下, 用户容量可呈指数增长. 同时, 互相关峰值比(P/W)与自相关峰值旁瓣比(P/C)分别提高了约33%和8%.
    Free spectral range (FSR) of reflection spectrum of micro-ring resonator restricts the improvement in user capacity of the optical code division multiple access (OCDMA) system using micro-ring resonator array. Vernier effects can expand FSR of cascaded optical microring resonator. Based on vernier effect, a novel two-dimensional coherent optical en/decoder using serially coupled dumbbell micro-ring resonator is proposed in this paper. The theoretical model of optical transmission for series dumbbell-shaped microring resonators is established. The relation between the suppression of pseudo-modes in optical reflection spectrum and the coupling coefficient is analyzed in detail. The effects of coupling coefficient, processing error and chip rate on the performance of series dumbbell microring resonator optical en/decoder are studied. The en/decoding simulation experiments are carried out on a series dumbbell-shaped micro-ring resonator with radius of 40 μm-30 μm-40 μm respectively. The results show that comparing with the traditional series micro-ring resonator with radius of 40 μm-40 μm-40 μm respectively, the FSR value of dumbbell microcavity is increased by 4 times and the user capacity can increase exponentially. Meanwhile, the ratio of autocorrelation peak to maximum wing (P/W) and the cross-correlation ratio (P/C) are increased by about 33% and 8%, respectively.
      通信作者: 严英占, yyz712@126.com
    • 基金项目: 国家自然科学基金(批准号: 2019B1-0171)和河北省教育厅青年基金(批准号: QN2016182)资助课题
      Corresponding author: Yan Ying-Zhan, yyz712@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 2019B1-0171) and the Natural Science Foundation of Hebei Province, China (Grant No. QN2016182)
    [1]

    Yeteng T, Tao P, Hua Z, Jilin Z, Guorui S, Juan L 2020 Opt. Fiber Technol. 58 102254Google Scholar

    [2]

    Mohammad H, Mohammad R P 2017 J. Lightwave Technol. 35 2853Google Scholar

    [3]

    Ankita R, Deepak K 2019 J. Opt. Commun. 40 463Google Scholar

    [4]

    李传起, 孙小菡 2005 量子电子学报 22 326Google Scholar

    Li C Q, Sun X H 2005 Chin. J. Quantum Electron. 22 326Google Scholar

    [5]

    李晓滨, 孙玉勇, 宋建中 2003 中国激光 4 353Google Scholar

    Li X B, Sun Y Y, Song J Z 2003 Chin. J. Lasers 4 353Google Scholar

    [6]

    刘新宇, 卢金明, 张永林 2006 暨南大学学报(自然科学与医学版) 1 66

    Liu X Y, Lu J M, Zhang Y L 2006 J. Jinan Univ. (Nat. Sci. Med. Ed.) 1 66

    [7]

    尹波, 刘必晨, 白瑶晨, 唐敏, 蒋东新 2007 半导体光电 1 108Google Scholar

    Yin B, Liu B C, Bai Y C, Tang M, Jiang D X 2007 Semicond. Optoelectron. 1 108Google Scholar

    [8]

    高欢姜, 筱彤, 李萍 2018 光通信技术 42 39

    Gao H J, Xiao T, Li P 2018 Opt. Commun. Technol. 42 39

    [9]

    Vahala K J 2003 Nature 424 839Google Scholar

    [10]

    张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11

    Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11

    [11]

    任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [12]

    谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏 2018 物理学报 67 144201Google Scholar

    Gu H M, Huang Y Q, Wang H H, Wu G, Duan X F, Liu K, Ren X M 2018 Acta Phys. Sin. 67 144201Google Scholar

    [13]

    Ji Z, Jia D G, Nie P Ch, Zhang H X, Zhang D L, Zhang Y M 2015 Opt. Commun. 347 123Google Scholar

    [14]

    吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟 2015 物理学报 64 034218Google Scholar

    Ji Z, Jia D G, Zhang H X, Zhang D L, Zhang Y M 2015 Acta Phys. Sin. 64 034218Google Scholar

    [15]

    涂兴华, 赵宜超 2019 物理学报 68 244204Google Scholar

    Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar

    [16]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [17]

    Shah J 2003 Opt. Photonics News 14 42

    [18]

    Anjali A, Paul T, Ronald M 2006 IEEE Photonics Technol. Lett. 18 1952Google Scholar

    [19]

    Anjali A, Paul T, Ronald M, Shahab E, Janet J, Jeffrey Y, Thomas B 2005 J. Lightwave Technol. 24 77

    [20]

    Wang X, Gao Z S 2011 Proceedings of Photonics and Optoelectronics Meetings Wuhan, China, November 02, 2011 p833302

    [21]

    Wang X, Gao Z S 2011 IEEE Photonics Technol. Lett. 23 591Google Scholar

    [22]

    Otto S 2007 Opt. Commun. 271 424Google Scholar

    [23]

    Choi S J, Zhen P, Yang Q, Choi S J, Dapkus P D 2005 IEEE Photonics Technol. Lett. 17 106Google Scholar

    [24]

    张小贝, 黄德修, 洪伟 2007 光学学报 27 1939Google Scholar

    Zhang X B, Huang D X, Hong W 2007 Acta Opt. Sin. 27 1939Google Scholar

    [25]

    Fegadolli W S, Vargas G, Wang X, Valini F, Barea L A M, Oliveira J E B, Frateschi N, Scherer A, Almeida V R, Panepucci R R 2012 Opt. Express 20 14722Google Scholar

    [26]

    Nawrocka M S, Liu T, Wang X 2006 Appl. Phys. Lett. 89 071110Google Scholar

  • 图 1  哑铃型微环谐振腔结构示意图

    Fig. 1.  Schematic diagram of serially coupled dumbbell microring resonator.

    图 2  反射谱无分裂峰时krbkrr的关系

    Fig. 2.  Dependence of krb and krr in achieving single peak reflection.

    图 3  哑铃型微腔反射谱特性 (a) FSR; (b) 伪模分布

    Fig. 3.  Intensity of reflection spectrum of dumbbell microring resonator: (a) FSR; (b) distribution of spurious modes within the FSR

    图 4  哑铃型微腔伪模的峰值透射率变化与krb的关系 (a) 伪模1和3随耦合系数的变化曲线; (b) 伪模2和4随耦合系数的变化曲线

    Fig. 4.  Peak reflection of different spurious modes versus krb: (a) Reflectivity of spurious mode 1 and 3 versus krr and krb, respectively; (b) reflectivity of spurious mode 2 and 4 versus krr and krb, respectively.

    图 5  耦合系数krb与伪模2, 4反射率的关系 (a) 伪模2; (b) 伪模4

    Fig. 5.  Relationship between coupling coefficients krb and reflectivity of spurious mode 2 and 4: (a) Spurious mode 2; (b) spurious mode 4.

    图 6  哑铃型微腔编码器原理示意图

    Fig. 6.  Schematic of the proposed optical en/decoder; the heater is shown in blue.

    图 7  (a) 耦合系数与P/W, P/C的关系; (b) krb = 0.3时, 不同krr取值下, 反射谱特性

    Fig. 7.  (a) Relationship between coupling coefficient and P/W, P/C; (b) when krb = 0.3, the peak reflectance of reflection spectrum corresponding to different krr.

    图 8  阵列间距与编解码性能关系

    Fig. 8.  Relationship between array spacing and en/decoding performance.

    图 9  不同码字对应的编码后的光谱图与时域波形图

    Fig. 9.  Encoded spectrum and corresponding waveforms for different 2-D optical codes.

    图 10  匹配与非匹配的光解码器波形图 (a) 半径相同串联微环编解码器; (b) 哑铃型微环编解码器

    Fig. 10.  Auto-/cross-correlation signals with correct and incorrect codes: (a) Serial microring en/decoder with same radius; (b) dumbbell Microring en/decoder.

    表 1  阵列间距对应的码片速率值

    Table 1.  Chip rate value corresponding to array spacing.

    Λ/mm0.60.812345678910
    Chip rate/(Gchip·s–1)166.71251005033.3252016.714.312.511.110
    下载: 导出CSV

    表 2  哑铃型微环结构与半径相同串联微环结构性能对比

    Table 2.  Comparison of dumbbell-shaped micro-ring structure and series micro-ring structure with the same radius.

    半径/μmFSR/nmP/WP/C
    40-30-40136.398.71
    40-40-403.24.788.05
    下载: 导出CSV
  • [1]

    Yeteng T, Tao P, Hua Z, Jilin Z, Guorui S, Juan L 2020 Opt. Fiber Technol. 58 102254Google Scholar

    [2]

    Mohammad H, Mohammad R P 2017 J. Lightwave Technol. 35 2853Google Scholar

    [3]

    Ankita R, Deepak K 2019 J. Opt. Commun. 40 463Google Scholar

    [4]

    李传起, 孙小菡 2005 量子电子学报 22 326Google Scholar

    Li C Q, Sun X H 2005 Chin. J. Quantum Electron. 22 326Google Scholar

    [5]

    李晓滨, 孙玉勇, 宋建中 2003 中国激光 4 353Google Scholar

    Li X B, Sun Y Y, Song J Z 2003 Chin. J. Lasers 4 353Google Scholar

    [6]

    刘新宇, 卢金明, 张永林 2006 暨南大学学报(自然科学与医学版) 1 66

    Liu X Y, Lu J M, Zhang Y L 2006 J. Jinan Univ. (Nat. Sci. Med. Ed.) 1 66

    [7]

    尹波, 刘必晨, 白瑶晨, 唐敏, 蒋东新 2007 半导体光电 1 108Google Scholar

    Yin B, Liu B C, Bai Y C, Tang M, Jiang D X 2007 Semicond. Optoelectron. 1 108Google Scholar

    [8]

    高欢姜, 筱彤, 李萍 2018 光通信技术 42 39

    Gao H J, Xiao T, Li P 2018 Opt. Commun. Technol. 42 39

    [9]

    Vahala K J 2003 Nature 424 839Google Scholar

    [10]

    张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11

    Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11

    [11]

    任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar

    Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar

    [12]

    谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏 2018 物理学报 67 144201Google Scholar

    Gu H M, Huang Y Q, Wang H H, Wu G, Duan X F, Liu K, Ren X M 2018 Acta Phys. Sin. 67 144201Google Scholar

    [13]

    Ji Z, Jia D G, Nie P Ch, Zhang H X, Zhang D L, Zhang Y M 2015 Opt. Commun. 347 123Google Scholar

    [14]

    吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟 2015 物理学报 64 034218Google Scholar

    Ji Z, Jia D G, Zhang H X, Zhang D L, Zhang Y M 2015 Acta Phys. Sin. 64 034218Google Scholar

    [15]

    涂兴华, 赵宜超 2019 物理学报 68 244204Google Scholar

    Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar

    [16]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [17]

    Shah J 2003 Opt. Photonics News 14 42

    [18]

    Anjali A, Paul T, Ronald M 2006 IEEE Photonics Technol. Lett. 18 1952Google Scholar

    [19]

    Anjali A, Paul T, Ronald M, Shahab E, Janet J, Jeffrey Y, Thomas B 2005 J. Lightwave Technol. 24 77

    [20]

    Wang X, Gao Z S 2011 Proceedings of Photonics and Optoelectronics Meetings Wuhan, China, November 02, 2011 p833302

    [21]

    Wang X, Gao Z S 2011 IEEE Photonics Technol. Lett. 23 591Google Scholar

    [22]

    Otto S 2007 Opt. Commun. 271 424Google Scholar

    [23]

    Choi S J, Zhen P, Yang Q, Choi S J, Dapkus P D 2005 IEEE Photonics Technol. Lett. 17 106Google Scholar

    [24]

    张小贝, 黄德修, 洪伟 2007 光学学报 27 1939Google Scholar

    Zhang X B, Huang D X, Hong W 2007 Acta Opt. Sin. 27 1939Google Scholar

    [25]

    Fegadolli W S, Vargas G, Wang X, Valini F, Barea L A M, Oliveira J E B, Frateschi N, Scherer A, Almeida V R, Panepucci R R 2012 Opt. Express 20 14722Google Scholar

    [26]

    Nawrocka M S, Liu T, Wang X 2006 Appl. Phys. Lett. 89 071110Google Scholar

  • [1] 杨俊, 赵修良, 陈瑞达, 侯佳斌, 侯玉苗, 贺三军, 周超, 刘丽艳. NaCl, NaCl:Al与NaCl:Ca热释光峰值温度偏移特性. 物理学报, 2024, 73(13): 137801. doi: 10.7498/aps.73.20240231
    [2] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [3] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [4] 吉喆, 严英占, 贾大功. 基于串联哑铃型微环谐振腔的二维相干光码分多址编解码器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20200057
    [5] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [6] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [7] 刘红丽, 黄雅丽, 罗春海, 胡海波. 基于用户行为的微博网络信息扩散模型. 物理学报, 2016, 65(15): 158901. doi: 10.7498/aps.65.158901
    [8] 张同伟, 杨坤德, 马远良, 汪勇. 一种基于单水听器宽带信号自相关函数的水下目标定位稳健方法. 物理学报, 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [9] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟. 结构参数对串联微环谐振腔编解码器性能的影响. 物理学报, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [10] 郑驰超, 彭虎, 韩志会. 互相关自适应加权的医学超声成像算法研究. 物理学报, 2014, 63(14): 148702. doi: 10.7498/aps.63.148702
    [11] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [12] 张青, 赵研英, 魏志义. MW级峰值功率掺钛蓝宝石激光振荡器. 物理学报, 2010, 59(5): 3244-3248. doi: 10.7498/aps.59.3244
    [13] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化. 物理学报, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [14] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [15] 张 邺, 戴一堂, 孙 杰, 张冶金, 谢世钟. 基于重构等效啁啾制作光纤光栅编解码器的光码分多址系统实现. 物理学报, 2007, 56(12): 7034-7038. doi: 10.7498/aps.56.7034
    [16] 谢旭东, 王清月, 柴 路. 频域标定飞秒脉冲干涉自相关迹及钛宝石振荡器实时啁啾监测. 物理学报, 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [17] 武连文, 程乾生. 关于动力学互相关因子指数的注记. 物理学报, 2005, 54(7): 3027-3028. doi: 10.7498/aps.54.3027
    [18] 沈京玲, 张存林, 胡 颖, S. P. Jamison. 啁啾脉冲互相关法探测THz辐射. 物理学报, 2004, 53(7): 2212-2215. doi: 10.7498/aps.53.2212
    [19] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究. 物理学报, 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
    [20] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 掺杂铌酸锂双相位共轭镜光学谐振腔的最佳抽运比. 物理学报, 1995, 44(8): 1217-1221. doi: 10.7498/aps.44.1217
计量
  • 文章访问数:  4363
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-11-03
  • 上网日期:  2021-12-21
  • 刊出日期:  2022-01-05

/

返回文章
返回