-
利用微环谐振腔阵列进行光码分多址编解码过程中, 微环谐振腔反射谱的自由频谱宽度(FSR)范围制约该系统用户容量的提升. 本文提出了一种新型的基于游标效应的串联哑铃型微环谐振腔光编解码器. 利用Matlab建立了半径分别为40 μm-30 μm-40 μm的哑铃型微环谐振腔光编解码器模型. 详细分析了光反射谱伪模抑制与耦合系数的关系, 研究了耦合系数、码片速率对串联哑铃型微环谐振腔光编解码器性能的影响. 结果表明, 与半径分别为40 μm-40 μm-40 μm的传统串联微环谐振腔编解码器相比, 哑铃型微腔编解码器FSR值扩大了4倍. 理想情况下, 用户容量可呈指数增长. 同时, 互相关峰值比(P/W)与自相关峰值旁瓣比(P/C)分别提高了约33%和8%.
-
关键词:
- 微环谐振腔光编解码器 /
- 用户容量 /
- 自相关峰值旁瓣比 /
- 互相关峰值比
Free spectral range (FSR) of reflection spectrum of micro-ring resonator restricts the improvement in user capacity of the optical code division multiple access (OCDMA) system using micro-ring resonator array. Vernier effects can expand FSR of cascaded optical microring resonator. Based on vernier effect, a novel two-dimensional coherent optical en/decoder using serially coupled dumbbell micro-ring resonator is proposed in this paper. The theoretical model of optical transmission for series dumbbell-shaped microring resonators is established. The relation between the suppression of pseudo-modes in optical reflection spectrum and the coupling coefficient is analyzed in detail. The effects of coupling coefficient, processing error and chip rate on the performance of series dumbbell microring resonator optical en/decoder are studied. The en/decoding simulation experiments are carried out on a series dumbbell-shaped micro-ring resonator with radius of 40 μm-30 μm-40 μm respectively. The results show that comparing with the traditional series micro-ring resonator with radius of 40 μm-40 μm-40 μm respectively, the FSR value of dumbbell microcavity is increased by 4 times and the user capacity can increase exponentially. Meanwhile, the ratio of autocorrelation peak to maximum wing (P/W) and the cross-correlation ratio (P/C) are increased by about 33% and 8%, respectively.-
Keywords:
- optical micro-ring resonatoren/decoder /
- user capacity /
- auto-correlation peak level over maximum wing level (P/W) /
- auto-correlation peak level (P/C)
[1] Yeteng T, Tao P, Hua Z, Jilin Z, Guorui S, Juan L 2020 Opt. Fiber Technol. 58 102254Google Scholar
[2] Mohammad H, Mohammad R P 2017 J. Lightwave Technol. 35 2853Google Scholar
[3] Ankita R, Deepak K 2019 J. Opt. Commun. 40 463Google Scholar
[4] 李传起, 孙小菡 2005 量子电子学报 22 326Google Scholar
Li C Q, Sun X H 2005 Chin. J. Quantum Electron. 22 326Google Scholar
[5] 李晓滨, 孙玉勇, 宋建中 2003 中国激光 4 353Google Scholar
Li X B, Sun Y Y, Song J Z 2003 Chin. J. Lasers 4 353Google Scholar
[6] 刘新宇, 卢金明, 张永林 2006 暨南大学学报(自然科学与医学版) 1 66
Liu X Y, Lu J M, Zhang Y L 2006 J. Jinan Univ. (Nat. Sci. Med. Ed.) 1 66
[7] 尹波, 刘必晨, 白瑶晨, 唐敏, 蒋东新 2007 半导体光电 1 108Google Scholar
Yin B, Liu B C, Bai Y C, Tang M, Jiang D X 2007 Semicond. Optoelectron. 1 108Google Scholar
[8] 高欢姜, 筱彤, 李萍 2018 光通信技术 42 39
Gao H J, Xiao T, Li P 2018 Opt. Commun. Technol. 42 39
[9] Vahala K J 2003 Nature 424 839Google Scholar
[10] 张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11
Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11
[11] 任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar
Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar
[12] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏 2018 物理学报 67 144201Google Scholar
Gu H M, Huang Y Q, Wang H H, Wu G, Duan X F, Liu K, Ren X M 2018 Acta Phys. Sin. 67 144201Google Scholar
[13] Ji Z, Jia D G, Nie P Ch, Zhang H X, Zhang D L, Zhang Y M 2015 Opt. Commun. 347 123Google Scholar
[14] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟 2015 物理学报 64 034218Google Scholar
Ji Z, Jia D G, Zhang H X, Zhang D L, Zhang Y M 2015 Acta Phys. Sin. 64 034218Google Scholar
[15] 涂兴华, 赵宜超 2019 物理学报 68 244204Google Scholar
Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar
[16] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[17] Shah J 2003 Opt. Photonics News 14 42
[18] Anjali A, Paul T, Ronald M 2006 IEEE Photonics Technol. Lett. 18 1952Google Scholar
[19] Anjali A, Paul T, Ronald M, Shahab E, Janet J, Jeffrey Y, Thomas B 2005 J. Lightwave Technol. 24 77
[20] Wang X, Gao Z S 2011 Proceedings of Photonics and Optoelectronics Meetings Wuhan, China, November 02, 2011 p833302
[21] Wang X, Gao Z S 2011 IEEE Photonics Technol. Lett. 23 591Google Scholar
[22] Otto S 2007 Opt. Commun. 271 424Google Scholar
[23] Choi S J, Zhen P, Yang Q, Choi S J, Dapkus P D 2005 IEEE Photonics Technol. Lett. 17 106Google Scholar
[24] 张小贝, 黄德修, 洪伟 2007 光学学报 27 1939Google Scholar
Zhang X B, Huang D X, Hong W 2007 Acta Opt. Sin. 27 1939Google Scholar
[25] Fegadolli W S, Vargas G, Wang X, Valini F, Barea L A M, Oliveira J E B, Frateschi N, Scherer A, Almeida V R, Panepucci R R 2012 Opt. Express 20 14722Google Scholar
[26] Nawrocka M S, Liu T, Wang X 2006 Appl. Phys. Lett. 89 071110Google Scholar
-
表 1 阵列间距对应的码片速率值
Table 1. Chip rate value corresponding to array spacing.
Λ/mm 0.6 0.8 1 2 3 4 5 6 7 8 9 10 Chip rate/(Gchip·s–1) 166.7 125 100 50 33.3 25 20 16.7 14.3 12.5 11.1 10 表 2 哑铃型微环结构与半径相同串联微环结构性能对比
Table 2. Comparison of dumbbell-shaped micro-ring structure and series micro-ring structure with the same radius.
半径/μm FSR/nm P/W P/C 40-30-40 13 6.39 8.71 40-40-40 3.2 4.78 8.05 -
[1] Yeteng T, Tao P, Hua Z, Jilin Z, Guorui S, Juan L 2020 Opt. Fiber Technol. 58 102254Google Scholar
[2] Mohammad H, Mohammad R P 2017 J. Lightwave Technol. 35 2853Google Scholar
[3] Ankita R, Deepak K 2019 J. Opt. Commun. 40 463Google Scholar
[4] 李传起, 孙小菡 2005 量子电子学报 22 326Google Scholar
Li C Q, Sun X H 2005 Chin. J. Quantum Electron. 22 326Google Scholar
[5] 李晓滨, 孙玉勇, 宋建中 2003 中国激光 4 353Google Scholar
Li X B, Sun Y Y, Song J Z 2003 Chin. J. Lasers 4 353Google Scholar
[6] 刘新宇, 卢金明, 张永林 2006 暨南大学学报(自然科学与医学版) 1 66
Liu X Y, Lu J M, Zhang Y L 2006 J. Jinan Univ. (Nat. Sci. Med. Ed.) 1 66
[7] 尹波, 刘必晨, 白瑶晨, 唐敏, 蒋东新 2007 半导体光电 1 108Google Scholar
Yin B, Liu B C, Bai Y C, Tang M, Jiang D X 2007 Semicond. Optoelectron. 1 108Google Scholar
[8] 高欢姜, 筱彤, 李萍 2018 光通信技术 42 39
Gao H J, Xiao T, Li P 2018 Opt. Commun. Technol. 42 39
[9] Vahala K J 2003 Nature 424 839Google Scholar
[10] 张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11
Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11
[11] 任光辉, 陈少武, 曹彤彤 2012 物理学报 61 034215Google Scholar
Ren G H, Chen S W, Cao T T 2012 Acta Phys. Sin. 61 034215Google Scholar
[12] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏 2018 物理学报 67 144201Google Scholar
Gu H M, Huang Y Q, Wang H H, Wu G, Duan X F, Liu K, Ren X M 2018 Acta Phys. Sin. 67 144201Google Scholar
[13] Ji Z, Jia D G, Nie P Ch, Zhang H X, Zhang D L, Zhang Y M 2015 Opt. Commun. 347 123Google Scholar
[14] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟 2015 物理学报 64 034218Google Scholar
Ji Z, Jia D G, Zhang H X, Zhang D L, Zhang Y M 2015 Acta Phys. Sin. 64 034218Google Scholar
[15] 涂兴华, 赵宜超 2019 物理学报 68 244204Google Scholar
Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar
[16] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[17] Shah J 2003 Opt. Photonics News 14 42
[18] Anjali A, Paul T, Ronald M 2006 IEEE Photonics Technol. Lett. 18 1952Google Scholar
[19] Anjali A, Paul T, Ronald M, Shahab E, Janet J, Jeffrey Y, Thomas B 2005 J. Lightwave Technol. 24 77
[20] Wang X, Gao Z S 2011 Proceedings of Photonics and Optoelectronics Meetings Wuhan, China, November 02, 2011 p833302
[21] Wang X, Gao Z S 2011 IEEE Photonics Technol. Lett. 23 591Google Scholar
[22] Otto S 2007 Opt. Commun. 271 424Google Scholar
[23] Choi S J, Zhen P, Yang Q, Choi S J, Dapkus P D 2005 IEEE Photonics Technol. Lett. 17 106Google Scholar
[24] 张小贝, 黄德修, 洪伟 2007 光学学报 27 1939Google Scholar
Zhang X B, Huang D X, Hong W 2007 Acta Opt. Sin. 27 1939Google Scholar
[25] Fegadolli W S, Vargas G, Wang X, Valini F, Barea L A M, Oliveira J E B, Frateschi N, Scherer A, Almeida V R, Panepucci R R 2012 Opt. Express 20 14722Google Scholar
[26] Nawrocka M S, Liu T, Wang X 2006 Appl. Phys. Lett. 89 071110Google Scholar
计量
- 文章访问数: 4363
- PDF下载量: 67
- 被引次数: 0