搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响

朱彦熔 常正实

引用本文:
Citation:

脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响

朱彦熔, 常正实

Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube

Zhu Yan-Rong, Chang Zheng-Shi
PDF
HTML
导出引用
  • 通过仿真和实验相结合的手段, 以直流脉冲电压驱动的双环电极结构He大气压等离子体射流为例, 研究了电压上升沿时间对管内放电等离子体发展演化特性的影响. 随着电压上升沿的改变, 管内介质阻挡放电(dielectric barrier discharge, DBD)区出现空心和实心两种放电模式. 上升沿为纳秒和亚微秒量级时, 以空心模式发展, 上升沿持续增加后转变为实心模式. 放电模式本质上受鞘层厚度、管内电场和表面电荷密度分布的影响, 鞘层厚度小于1.8 mm时等离子体通常以空心模式传播, 等于1.8 mm时等离子体的径向传播范围有限而转变为实心传播. 管内DBD区, 电场以轴向分量为主时, 等离子体以放电起始时的模式传播; 而在地电极内部, 由于外施电场方向发生径向偏转, 同时管壁沉积的正电荷形成径向自建电场, 两者叠加形成的强径向电场致使放电以空心模式传播.
    In this work, we employ pulse voltage to drive an atmospheric pressure plasma jet (APPJ) in Helium, and consider mainly the evolution of discharge inside tube. Specifically, the effects of rising edge on the discharge evolution are studied through the simulation and experiment. The spatiotemporal evolution of electron density, ionization source, electron temperature and excited helium atom are evaluated. Besides, the mechanism affecting the rise time is analyzed by the parameters such as discharge current, sheath thickness and surface charge density distribution. In the considered cases, the ionization wave propagates to the ground electrode and downstream of the active electrode in the dielectric tube. The plasma with faster rising edge has larger electron temperature, discharge current, electron density and electric field strength. With the change of voltage rising edge, there occur two discharge modes: hollow mode and solid mode in dielectric barrier discharge (DBD) area. When the rising edge is of nanosecond and sub microsecond, it develops into hollow mode, and changes into solid mode after the rising edge has continued to increase. Both discharge modes are essentially affected by the sheath thickness, the electric field distribution, and the surface charge density inside the tube. When the sheath thickness is less than 1.8 mm, the plasma usually propagates in hollow mode, and when the sheath thickness is equal to 1.8 mm, the radial propagation range of the plasma is limited and changes into solid propagation. In the DBD region, when the electric field is mainly axial component, the plasma propagates in the mode at the beginning of discharge; inside the ground electrode, owing to the fact that the applied electric field is deviated from the radial direction, and that the positive charge deposited on the tube wall forms a radial self-built electric field, the strong radial electric field formed by the superposition of the two fields causes the discharge to propagate in hollow mode.
      通信作者: 常正实, changzhsh1984@163.com
    • 基金项目: 强脉冲辐射环境模拟与效应国家重点实验室开放课题(批准号: SKLIPR1706)和国家自然科学基金 (批准号: 51777165)资助的课题
      Corresponding author: Chang Zheng-Shi, changzhsh1984@163.com
    • Funds: Project supported by the State Key Laboratory for Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1706) and the National Natural Science Foundation of China (Grant No. 51777165)
    [1]

    Chang Z S, Li G Q, Liu J R, Xu D H, Shi X M, Zhang G J 2019 Plasma Processes Polym. 16 e1800165 10

    [2]

    Xu G M, Shi X M, Cai J F, Chen S L, Li P, Yao C W, Chang Z S, Zhang G J 2015 Wound Repair Regen. 23 878Google Scholar

    [3]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Kostya O 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [4]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [5]

    Naidis G V 2012 J. Appl. Phys. 112 103304Google Scholar

    [6]

    Zheng Y S, Wang L J, Wang D 2018 J. Appl. Phys. 124 123301Google Scholar

    [7]

    Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 630 1Google Scholar

    [8]

    Zhang C, Shao T, Wang R X, Zhou Z S, Zhou Y X, Yan P 2014 Phys. Plasmas 21 103505Google Scholar

    [9]

    Chang Z S, Yao C W, Chen S L, Zhang G J 2016 Phys. Plasmas 23 093503Google Scholar

    [10]

    Chang Z S, Zhao N, Li G Q, Zhang G J 2018 Sci. Rep. 8 7599Google Scholar

    [11]

    Huang B D, Takashima K, Zhu X M, Pu Y K 2015 J. Phys. D:Appl. Phys. 48 125202Google Scholar

    [12]

    Liu Y D, Tan Z Y, Chen X X, Li X T, Wang X L, Zhang H M, Pan J 2018 IEEE Trans. Plasma Sci. 46 2865Google Scholar

    [13]

    Iza F, Walsh J L, Kong M G 2009 IEEE Trans. Plasma Sci. 37 1289Google Scholar

    [14]

    Ayan H, Staack D, Fridman G, Gutsol A, Mukhin Y, Starikovskii A, Fridman A, Friedman G 2009 J. Phys. D:Appl. Phys. 42 125202Google Scholar

    [15]

    Qian M Y, Li G, Liu S Q, Zhang Y, Li S, Lin Z B, Wang D Z 2017 Plasma Sci. Technol. 19 064015Google Scholar

    [16]

    Zhang Y, Liang X, Li J, Wei L 2018 IEEE Trans. Plasma Sci. 46 103Google Scholar

    [17]

    Wu S, Xu H, Lu X, Pan Y 2013 Plasma Processes Polym. 10 136Google Scholar

    [18]

    Gong W W, Huang Q J, Wang Z, Yang Y 2014 IEEE Trans. Plasma Sci. 42 2868Google Scholar

    [19]

    赵勇, 王瑞雪, 章程, 郑书河, 邵涛 2019 电工技术学报 34 174

    Zhao Y, Wang R X, Zhang C, Zheng S H, Shao T 2019 Tran. China, Electrotechnical Soc. 34 174 (in Chinese)

    [20]

    Chen S L, Chen X Y, Yao C W, Xu G M, Chang Z S, Zhang G J 2018 Phys. Plasmas 25 083510Google Scholar

    [21]

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spectr. Anal. 28 2754Google Scholar

    [22]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [23]

    Li G Q, Chen X, Zhu Y R, Guo H L, Zhao N, Chang Z S 2021 J. Phys. D: Appl. Phys. 54 285204Google Scholar

    [24]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [25]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [26]

    Zhu P, Li B, Duan Z C, Ouyang J T 2018 J. Phys. D:Appl. Phys. 51 405202Google Scholar

    [27]

    Kettlitz M, Hoft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [28]

    Jiang N, Ji A, Cao Z 2010 J. Appl. Phys. 108 033302Google Scholar

    [29]

    Jansky J, Bourdon A 2011 Appl. Phys. Lett. 99 161504Google Scholar

    [30]

    Ning W J, Dai D, Li L C 2018 Plasma Processes Polym. 15 e1800010Google Scholar

    [31]

    Li J R, Zhang J, Wang Y H, Jiang Y Y, Wang D Z 2021 IEEE Trans. Plasma Sci. 49 234Google Scholar

    [32]

    Babaeva N Y, Naidis G V 2016 IEEE Trans. Plasma Sci. 44 899Google Scholar

    [33]

    Jansky J, Bourdon A 2011 Eur. Phys. J. Appl. Phys. 55 13810Google Scholar

    [34]

    Sato Y, Ishikawa K, Tsutsumi T, Hori M 2020 Appl. Phys. Express 13 086001Google Scholar

  • 图 1  等离子体产生与诊断实验平台示意图

    Fig. 1.  Schematic diagram of plasma generation and diagnosis experimental platform.

    图 2  仿真模型示意图 ①管内部, ②管壁, ③环形电极, ④空气域

    Fig. 2.  Schematic of the simulation configuration. ① the glass tube interior, ② the tube wall, ③ the ring electrode, ④ ambient air

    图 3  实验和仿真中50 ns上升沿时的电压电流波形 (a) 实验总电流波形; (b)剔除位移分量的实验电流波形, 其中序号1—27分别表示ICCD连续拍摄的时间段; (c) 仿真总电流波形

    Fig. 3.  Discharge voltage and current waveforms with rising edge of 50 ns in experiment and simulation: (a) Experimental full current waveform; (b) experimental current waveform excluding displacement current, the number 1–27 represent the time interval of ICCD continuous acquisition respectively; (c) simulation full current waveform.

    图 4  放电在介质管内的发展过程 (a) ICCD图像; (b)发展过程中He*的密度分布

    Fig. 4.  Propagating process of discharge in dielectric tube: (a) ICCD picture; (b) He* distribution in evolution.

    图 5  管内等离子体发展过程中的 (a)电子密度ne和(b)电离源项Re

    Fig. 5.  Distribution of electron density and ionization source during plasma evolution in tube: (a) Electron density; (b) ionization source.

    图 6  等离子体传播到地电极“上游”边沿(z = 2 cm)以及离开地电极(z = 2.5 cm)后的电子密度ne分布

    Fig. 6.  Electron density distribution of plasma propagating to the upstream edge of the ground electrode (z = 2 cm) and leaving the ground electrode (z = 2.5 cm).

    图 7  不同上升沿时, DBD区的仿真和实验对比 (a) 50 ns; (b) 200 ns; (c) 500 ns (za, zbzc分别代表GSD和FWHM提取位置)

    Fig. 7.  Simulation and experimental results comparison of DBD area under different rising edge: (a) 50 ns; (b) 200 ns; (c) 500 ns. (za, zb and zc represent the data extraction position of GSD and FWHM respectively).

    图 8  正脉冲放电期间的电子密度及电离源项分布 (a) z = 0.3, 0.9 cm处的电子密度ne; (b) z = 0.3, 0.9 cm处的电离源项Re; (c) z = 2.0, 2.5 cm处的电子密度ne; (d) z = 2.0, 2.5 cm处的电离源项Re

    Fig. 8.  Distribution of electron density and ionization source during positive discharge: (a) Electron density when z = 0.3, 0.9 cm; (b) ionization source when z = 0.3, 0.9 cm; (c) electron density when z = 2.0, 2.5 cm; (d) ionization source when z = 2.0, 2.5 cm.

    图 9  不同上升沿的外施电压下, 放电头部位于z = 0.9 cm时管内的电子密度、离子密度、电子温度、鞘层厚度及径向电场强度的径向分布 (a) 50 ns; (b) 2000 ns

    Fig. 9.  Radial distribution of electron density, ion density, electron temperature, sheath, and radial electric field intensity under the applied voltage with different rising edge when the head of plasma at z = 0.9 cm: (a) 50 ns; (b) 2000 ns

    图 10  2000 ns上升沿时, “子弹”头部轴向和径向电场的径向分布

    Fig. 10.  Radial distribution of axial and radial electric fields in the head of plasma under rising edge of 2000 ns.

    图 11  2000 ns上升沿时, 地电极内部电离源项Re的演化过程

    Fig. 11.  Evolution of Re in tube under ground electrode in rising edge of 2000 ns.

    图 12  2000 ns上升沿“子弹”头部位于不同位置时, 地电极内部介质管内壁表面电荷密度和径向电场沿轴向的分布 (a) z = 2.3 cm; (b) z = 2.5 cm

    Fig. 12.  Axial distribution of surface charge density and radial electric field on the inner wall of dielectric tube in the ground electrode when the head of plasma at different positions under rising edge of 2000 ns: (a) z = 2.3 cm; (b) z = 2.5 cm.

    图 13  不同上升沿, z = 1.75 cm处管内壁表面电荷密度和径向电场强度随时间的变化 (a) 50 ns; (b) 2000 ns

    Fig. 13.  Time dependence of surface charge density and radial electric field intensity during different rising edge at z = 1.75 cm: (a) 50 ns; (b) 2000 ns.

    表 1  模型中考虑的粒子及反应

    Table 1.  Plasma chemistry included in the model.

    No.反应式反应速率或汤森系数参考文献
    R1e + He → e + Heα1 [24]
    R2e + He → e + He*α2 [24]
    R3e + He → 2e + He+α3 [24]
    R4e + He* → 2e + He+$ 4.661 \times 10^{-16} T_{\rm e}^{0.6}\cdot {\rm e}^{(-55400/T_{\rm e})} $ [25]
    R52He* → e + He+ + He4.5 × 10–16 [25]
    R62e + He+ → e + He*6.186 × 10–39 $ T_{\rm e}^{-4.4} $ [25]
    R72He + He+ → He + ${\rm{He}}_2^+ $1 × 10–43 [25]
    R82e + ${\rm{He}}_2^+ $ → e + He + He*2.8 × 10–32 [25]
    R9e + He + He+ → He + He*6.66 × 10–42 $ T_{\rm e}^{-2} $ [25]
    R10e + He + ${\rm{He}}_2^+ $ → 2He + He*3.5 × 10–39 [26]
    R112He* → e + ${\rm{He}}_2^+ $2.3 × 10–15 [26]
    R12e + ${\rm{He}}_2^+ $ → He + He*5.386 × 10–13 $ T_{\rm e}^{-0.5} $ [25]
    注: Te 为电子温度(eV); α1, α2, α3 通过玻尔兹曼求解器求解[24] , 双体和三体反应的单位分别为m3·s–1和m6·s–1.
    下载: 导出CSV

    表 2  实验电流峰值时刻不同上升沿在管内za, zb, zc位置处的灰度值标准差和相对强度半高宽及仿真中电流峰值时刻对应位置处的相对强度半高宽统计

    Table 2.  GSD and the relative intensity FWHM at za, zb, zc of APPJ driven by different rising time at the time of current peak in experiment and the FWHM at the corresponding position at the time of current peak in simulation.

    位置50 ns200 ns500 ns
    实验光强灰度值标准差za28.633.349.6
    zb35.337.750.4
    zc31.030.046.9
    实验相对强度半高宽/mmza2.922.762.55
    zb2.482.311.98
    zc2.912.381.83
    仿真He*分布半高宽/mmza3.363.122.76
    zb3.283.162.88
    zc3.443.302.72
    下载: 导出CSV
  • [1]

    Chang Z S, Li G Q, Liu J R, Xu D H, Shi X M, Zhang G J 2019 Plasma Processes Polym. 16 e1800165 10

    [2]

    Xu G M, Shi X M, Cai J F, Chen S L, Li P, Yao C W, Chang Z S, Zhang G J 2015 Wound Repair Regen. 23 878Google Scholar

    [3]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Kostya O 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [4]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [5]

    Naidis G V 2012 J. Appl. Phys. 112 103304Google Scholar

    [6]

    Zheng Y S, Wang L J, Wang D 2018 J. Appl. Phys. 124 123301Google Scholar

    [7]

    Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 630 1Google Scholar

    [8]

    Zhang C, Shao T, Wang R X, Zhou Z S, Zhou Y X, Yan P 2014 Phys. Plasmas 21 103505Google Scholar

    [9]

    Chang Z S, Yao C W, Chen S L, Zhang G J 2016 Phys. Plasmas 23 093503Google Scholar

    [10]

    Chang Z S, Zhao N, Li G Q, Zhang G J 2018 Sci. Rep. 8 7599Google Scholar

    [11]

    Huang B D, Takashima K, Zhu X M, Pu Y K 2015 J. Phys. D:Appl. Phys. 48 125202Google Scholar

    [12]

    Liu Y D, Tan Z Y, Chen X X, Li X T, Wang X L, Zhang H M, Pan J 2018 IEEE Trans. Plasma Sci. 46 2865Google Scholar

    [13]

    Iza F, Walsh J L, Kong M G 2009 IEEE Trans. Plasma Sci. 37 1289Google Scholar

    [14]

    Ayan H, Staack D, Fridman G, Gutsol A, Mukhin Y, Starikovskii A, Fridman A, Friedman G 2009 J. Phys. D:Appl. Phys. 42 125202Google Scholar

    [15]

    Qian M Y, Li G, Liu S Q, Zhang Y, Li S, Lin Z B, Wang D Z 2017 Plasma Sci. Technol. 19 064015Google Scholar

    [16]

    Zhang Y, Liang X, Li J, Wei L 2018 IEEE Trans. Plasma Sci. 46 103Google Scholar

    [17]

    Wu S, Xu H, Lu X, Pan Y 2013 Plasma Processes Polym. 10 136Google Scholar

    [18]

    Gong W W, Huang Q J, Wang Z, Yang Y 2014 IEEE Trans. Plasma Sci. 42 2868Google Scholar

    [19]

    赵勇, 王瑞雪, 章程, 郑书河, 邵涛 2019 电工技术学报 34 174

    Zhao Y, Wang R X, Zhang C, Zheng S H, Shao T 2019 Tran. China, Electrotechnical Soc. 34 174 (in Chinese)

    [20]

    Chen S L, Chen X Y, Yao C W, Xu G M, Chang Z S, Zhang G J 2018 Phys. Plasmas 25 083510Google Scholar

    [21]

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spectr. Anal. 28 2754Google Scholar

    [22]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [23]

    Li G Q, Chen X, Zhu Y R, Guo H L, Zhao N, Chang Z S 2021 J. Phys. D: Appl. Phys. 54 285204Google Scholar

    [24]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [25]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [26]

    Zhu P, Li B, Duan Z C, Ouyang J T 2018 J. Phys. D:Appl. Phys. 51 405202Google Scholar

    [27]

    Kettlitz M, Hoft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [28]

    Jiang N, Ji A, Cao Z 2010 J. Appl. Phys. 108 033302Google Scholar

    [29]

    Jansky J, Bourdon A 2011 Appl. Phys. Lett. 99 161504Google Scholar

    [30]

    Ning W J, Dai D, Li L C 2018 Plasma Processes Polym. 15 e1800010Google Scholar

    [31]

    Li J R, Zhang J, Wang Y H, Jiang Y Y, Wang D Z 2021 IEEE Trans. Plasma Sci. 49 234Google Scholar

    [32]

    Babaeva N Y, Naidis G V 2016 IEEE Trans. Plasma Sci. 44 899Google Scholar

    [33]

    Jansky J, Bourdon A 2011 Eur. Phys. J. Appl. Phys. 55 13810Google Scholar

    [34]

    Sato Y, Ishikawa K, Tsutsumi T, Hori M 2020 Appl. Phys. Express 13 086001Google Scholar

  • [1] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [2] 董婉, 徐海文, 戴忠玲, 宋远红, 王友年. 电非对称双频容性耦合CF4/Ar放电电极间距对放电模式和刻蚀剖面的影响. 物理学报, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [3] 朱彦熔, 常正实. 脉冲电压上升沿对He APPJ管内放电发展演化特性的影响研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210470
    [4] 雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力. 旋转滑动弧放电等离子体滑动放电模式的实验研究. 物理学报, 2020, 69(19): 195203. doi: 10.7498/aps.69.20200672
    [5] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [7] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫. 电磁波在非均匀磁化的等离子体鞘套中传输特性研究. 物理学报, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [8] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [9] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据. 物理学报, 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [12] 吴静, 刘国, 姚列明, 段旭如. 等离子体鞘层附近尘埃颗粒特性的数值模拟. 物理学报, 2012, 61(7): 075205. doi: 10.7498/aps.61.075205
    [13] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [14] 郭卿超, 张家良, 刘莉莹, 王德真. 大气压Ar射频容性放电模式转变的温度表征. 物理学报, 2011, 60(2): 025207. doi: 10.7498/aps.60.025207
    [15] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [16] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [17] 黄永宪, 田修波, 杨士勤, Fu Ricky, Chu K. Paul. 脉冲偏压上升沿特性对等离子体浸没离子注入鞘层扩展动力学的影响. 物理学报, 2007, 56(8): 4762-4770. doi: 10.7498/aps.56.4762
    [18] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性. 物理学报, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [19] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  4712
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-09-12
  • 上网日期:  2021-12-30
  • 刊出日期:  2022-01-20

/

返回文章
返回