搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li-Y-H三元氢化物的结构和稳定性研究

李欢 叶小球 唐俊 敖冰云 高涛

引用本文:
Citation:

Li-Y-H三元氢化物的结构和稳定性研究

李欢, 叶小球, 唐俊, 敖冰云, 高涛

Structure and stability of possible new L i-Y-H ternary hydrides

Li Huan, Ye Xiao-Qiu, Tang Jun, Ao Bing-Yun, Gao Tao
PDF
HTML
导出引用
  • 本文基于粒子群优化算法的结构预测方法结合第一性原理计算, 研究了LiYH4, Li2YH5和Li3YH6在0—300 GPa压力范围内的晶体结构、电子结构、热力学和动力学稳定性. 研究结果表明LiYH4-P4/nmm, Li2YH5-I4/mmm和Li3YH6-P4/nmm结构可分别在169—221 GPa, 141—300 GPa和166—300 GPa压力范围内由LiH和YH3按一定配比加压合成. 富氢化合物的超导电性研究成为近年来高温超导体研究领域的热点, 该研究结果有希望为Li-Y-H三元体系氢化物的超导电性研究及实验合成提供数据支撑.
    The research on the superconductivity of hydrogen-rich compounds has become a hot research topic in the field of high-temperature superconductors in recent years and yttrium hydride YH9+x has been experimentally confirmed to have high temperature superconductivity (near room temperature (Tc = 262 K)), following behind the research of H3S (Tc = 200 K) and LaH10 (Tc = 260 K). The theoretical study of binary hydrogen-rich systems is relatively mature, while the structural characteristics and superconductivity of ternary or quaternary hydrogen-rich compounds are still under exploration. In this paper, nLiH + YH3→LinYHn+3 (n = 1–3) is the synthesis way to explore the stable configuration of ternary hydride LinYHn+3 in a pressure range of 0–300 GPa. The crystal structure, electronic structure, thermodynamic and kinetic stability of LiYH4, Li2YH5 and Li3YH6 in the pressure range of 0–300 GPa are studied based on the structure prediction by particle swarm optimization algorithm and first-principles calculation. The CALYPSO method is used to search for 1–4 times molecular formula structures for Li-Y-H ternary systems with different stoichiometric ratios in the pressure range of 0–300 GPa in steps of 50 GPa. The results show that LiYH4-P4/nmm, Li2YH5-I4/mmm, and Li3YH6-P4/nmm can be respectively synthesized with a certain ratio between LiH and YH3 respectively in a pressure range of 169–221 GPa, 141–300 GPa and 166–300 GPa. The Li2YH5 has the lowest stable pressure and widest range which can be the possible choice in experiment. The results can provide the data support for the superconductivity research and experimental synthesis of hydrides in Li-Y-H ternary system.
      通信作者: 叶小球, xiaoqiugood@sina.com ; 高涛, gaotao@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21401173)资助的课题
      Corresponding author: Ye Xiao-Qiu, xiaoqiugood@sina.com ; Gao Tao, gaotao@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21401173)
    [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Shamp A, Zurek E 2017 Nov. Supercond. Mater. 3 14Google Scholar

    [3]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1509Google Scholar

    [4]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U S A. 106 17640Google Scholar

    [5]

    孙莹, 刘寒雨, 马琰铭 2021 物理学报 70 017407Google Scholar

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407Google Scholar

    [6]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Science and Chemical Engineering

    [7]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [8]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [9]

    Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc Natl Acad Sci U S A. 114 6990Google Scholar

    [10]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [11]

    Wang C Z, Yi S, Cho J H 2019 Phys. Rev. B 100 060502Google Scholar

    [12]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [13]

    Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A, Dias R P 2021 Phys. Rev. Lett. 126 117003Google Scholar

    [14]

    Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M 2019 Phys. Rev. Lett. 123 097001Google Scholar

    [15]

    孙莹 2020 博士学位论文 (吉林: 吉林大学)

    Sun Y 2020 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [16]

    Grishakov K S, Degtyarenko N N, Mazur E A 2019 J. Exp. Theor. Phys. 128 105Google Scholar

    [17]

    Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C, Ma Y M 2015 Sci. Rep. 5 9948Google Scholar

    [18]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [19]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [20]

    Gao B, Gao P Y, Lu S H, Lv J, Wang Y C, Ma Y M 2019 Sci. Bull. 064 301Google Scholar

    [21]

    Kresse G G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [25]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204Google Scholar

    [26]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [27]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [28]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [29]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter. 21 395502Google Scholar

    [30]

    Liu L L, Sun H J, Wang C Z, Lu W C 2017 J. Phys.: Condens. Matter 29 325401Google Scholar

    [31]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [32]

    Mcmahon J M, Ceperley D M 2011 Phys. Rev. Lett. 106 165302Google Scholar

  • 图 1  LiYH4每分子式的基态静态焓随压力的变化关系, 以具有P4/nmm空间群的LiYH4结构为基准; 插图为300—330 GPa压力范围内的局部放大图

    Fig. 1.  Ground-state static enthalpy curves per formula unit as a function of pressure (with respect to the P4/nmm structure) for static LiYH4. The inset is a partial enlargement of the pressure range 300−330 GPa.

    图 2  LiYH4的晶体结构. 绿色、紫色、粉色小球分别代表Li, Y, H原子(Li-H, Y-H和H-H距离分别小于2.20 Å, 2.47 Å和2.00 Å)(a) 101.325 kPa时的P21/m; (b) 压力为150 GPa时的P4/nmm; (c) 压力为300 GPa时的Cmmm

    Fig. 2.  Crystal structures of (a) P21/m LiYH4 at 1 atm, (b) P4/nmm LiYH4 at 150 GPa and (c) Cmmm LiYH4 at 300 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively. Lines are drawn for Li-H, Y-H and H-H separations shorter than 2.20 Å, 2.47 Å and 2.00 Å, respectively.

    图 3  考虑零点能(ZPE) 修正后不同LiYH4结构的焓值在 (a) 0−35 GPa范围内和 (b) 290−325 GPa范围内随压力的变化关系

    Fig. 3.  Change of enthalpy of different LiYH4 structures with pressure in the range of (a) 0−35 GPa and (b) 290−325 GPa after the correction of zero point energy (ZPE) was considered.

    图 4  不同LiYH4结构 (a) P21/m (1 atm), (b) P4/nmm (150 GPa)和 (c) Cmmm (300 GPa)的等值面值为0.5的三维电子局域函数(ELF)

    Fig. 4.  Three-dimensional electron local function (ELF) with anisosurface value of 0.5 for different LiYH4 phase structures (a) P21/m (101.325 kPa), (b) P4/nmm (150 GPa) and (c) Cmmm (300 GPa).

    图 5  Li2YH5的晶体结构. 绿色、紫色、粉色小球分别代表Li, Y, H原子(Li-H, Y-H和H-H距离分别小于2.20 Å, 2.47 Å和2.00 Å)(a) 101.325 kPa下的Cmc21; (b) 101.325 kPa下的Pmn21; (c) 101.325 kPa下的Pmmn; (d) 300 GPa下的I4/mmm

    Fig. 5.  The crystal structures of (a) Cmc21 Li2YH5 at 101.325 kPa, (b) Pmn21 Li2YH5 at 101.325 kPa, (c) Pmmn Li2YH5 at 1 101.325 kPa and (d) I4/mmm Li2YH5at 300 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively. Lines are drawn for Li-H, Y-H and H-H separations shorter than 2.20 Å, 2.47 Å and 2.00 Å, respectively.

    图 6  Li2YH5每分子式的基态静态焓随压力的变化关系, 以具有I4/mmm空间群的Li2YH5结构为基准; 插图为考虑零点能 (ZPE) 修正后焓随压力的变化

    Fig. 6.  Ground-state static enthalpy curves per formula unit as a function of pressure (with respect to the I4/mmm structure) for static Li2YH5. The inset shows a modified enthalpy curve considering zero point energy (ZPE).

    图 7  不同Li2YH5结构 (a) Cmc21 (101.325 kPa), (b) Pmmn (101.325 kPa)和 (c) I4/mmm (300 GPa)的等值面值为0.5的三维电子局域函数(ELF)

    Fig. 7.  Three-dimensional electron local function (ELF) with anisosurface value of 0.5 for different Li2YH5 phase structures (a) Cmc21 (101.325 kPa), (b) Pmmn (101.325 kPa) and (c) I4/mmm (300 GPa).

    图 8  Li3YH6的晶体结构. 绿色、紫色、粉色小球分别代表Li, Y, H原子(Li-H, Y-H和H-H距离分别小于2.20 Å, 2.47 Å和2.00 Å)(a) P21/m (101.325 kPa); (b) Cmcm (100 GPa); (c) P4/nmm (300 GPa)

    Fig. 8.  Crystal structures of (a) P21/m Li3YH6 at 101.325 kPa, (b) CmcmLi3YH6 at 100 GPa and (c) P4/nmn Li3YH6 at 300 GPa. The green, purple and pink spheres represent Li, Y and H atoms, respectively.Lines are drawn for Li-H, Y-H and H-H separations shorter than 2.30 Å, 2.47 Å and 2.00 Å, respectively.

    图 9  Li3YH6的每个公式单位的焓值随压力的变化关系, 以P4/nmm结构的焓值为基准(考虑ZPEs的影响)

    Fig. 9.  Eenthalpy curves per formula unit as a function of pressure with respect to the predicted P4/nmm structure for static Li3YH6, ZPEs included.

    图 10  不同Li3YH6结构 (a) P21/m(101.325 kPa), (b) Cmcm (100 GPa)和 (c) P4/nmm (300 GPa)的等值面值为0.5的三维局域函数 (ELF)

    Fig. 10.  Three-dimensional electron local function (ELF) with an isosurface value of 0.5 for different Li3YH6 phase structures (a) P21/m (1 101.325 kPa), (b) Cmcm (100 GPa) and (c) P4/nmm (300 GPa).

    图 11  LiYH4的不同结构(P21/m, P4/nmmCmmm)相对于LiH + YH3的焓随压力的变化曲线(包含ZPEs的影响)

    Fig. 11.  Enthalpy curves of various structures (P21/m, P4/nmm and Cmmm) of LiYH4 relative to the products LiH + YH3 as functions of pressure, ZPEs included.

    图 12  Li2YH5的不同结构(Cmc21, PmmnI4/mmm)相对于2 LiH + YH3的焓随压力的变化曲线(包含ZPEs的影响)

    Fig. 12.  Enthalpy curves of various structures (Cmc21, Pmmn and I4/mmm) of Li2YH5 relative to the products 2 LiH + YH3 as functions of pressure, ZPEs included.

    图 13  Li3YH6的不同结构(P21/m, CmcmP4/nmm)相对于3 LiH + YH3的焓随压力的变化曲线(包含ZPEs的影响)

    Fig. 13.  Enthalpy curves of various structures (P21/m, Cmcm and P4/nmm) of Li3YH6 relative to the products 3 LiH + YH3 as functions of pressure, ZPEs included.

    图 14  LinYHn+3 (n = 1—3) 在不同压力下相对于LiH和YH3的形成焓. 实心的标志表明氢化物在对应的压力下稳定, 而空心的标志表明是亚稳或者不稳定

    Fig. 14.  Enthalpy of formation of LinYHn+3 (n = 1−3) with respect to LiH and YH3 at different pressures. The solid mark indicates that the hydride is stable at the corresponding pressure, while the hollow mark indicates that it is metastable or unstable.

    图 15  200 GPa下 (a) P4/nmm (LiYH4), (b) I4/mmm (Li2YH5)和 (c) P4/nmm (Li3YH6)的声子色散曲线(左)和投影声子态密度(右)

    Fig. 15.  Phonon dispersion (left), projected phonon density of states (PHDOS) (right) for (a) P4/nmm (LiYH4), (b) I4/mmm (Li2YH5) and (c)P4/nmm (Li3YH6) at 200 GPa.

    图 16  LinYHn+3 (n = 1−3)体系的带隙随压力的变化关系

    Fig. 16.  Change curves of the electron band gap with pressure for LinYHn+3 (n = 1−3).

    图 17  (a) LiYH4-P4/nmm, (b) Li2YH5-I4/mmm和 (c) Li3YH6-P4/nmm相结构在200 GPa下的电子能带结构和局域态密度; 水平虚线表示费米能级

    Fig. 17.  Electronic band structures and local density of states for (a) P4/nmm LiYH4, (b) I4/mmm Li2YH5 and (c) P4/nmm Li3YH6, calculated at 200 GPa. The horizontal dotted line indicates the Fermi energy levels.

    表 1  通过Bader电荷分析得到的P4/nmm (LiYH4) 在200 GPa的压力下, Li, Y和H原子剩余的价电子数量; σ(e)代表得失价电子数目(正值表示失去电子, 负值表示得到电子)

    Table 1.  Number of remaining valence electrons in Li, Y and H atoms of P4/nmm (LiYH4) obtained by bader charge analysis under the pressure of 200 GPa; σ(e) represents the number of valence electrons gained and lost (positive means lost electrons, negative means gained electrons).

    原子剩余价电子数目得失电子情况 σ(e)
    Li10.2998040.700196
    Li20.3000350.699965
    Y19.6880361.311964
    Y29.6880361.311964
    H11.538704–0.538704
    H21.508556–0.508556
    H31.495277–0.495277
    H41.469508–0.469508
    H51.538704–0.538704
    H61.469508–0.469508
    H71.508556–0.508556
    H81.495277–0.495277
    下载: 导出CSV

    表 3  通过Bader电荷分析得到的P4/nmm (Li3YH6) 在200 GPa的压力下, Li, Y和H原子剩余的价电子数量; σ(e)代表得失价电子数目(正值表示失去电子, 负值表示得到电子)

    Table 3.  Number of remaining valence electrons in Li, Y and H atoms of P4/nmm (Li3YH6) obtained by bader charge analysis under the pressure of 200 GPa; σ(e) represents the number of valence electrons gained and lost (positive means lost electrons, negative means gained electrons).

    原子剩余价电子数目得失电子情况σ(e)
    Li10.3057130.694287
    Li20.3092840.690716
    Li30.3137980.686202
    Li40.3091650.690835
    Li50.3137980.686202
    Li60.3057130.694287
    Y19.7611391.238861
    Y29.7611391.238861
    H11.548839–0.548839
    H21.548839–0.548839
    H31.674347–0.674347
    H41.528941–0.528941
    H51.475093–0.475093
    H61.556821–0.556821
    H71.556821–0.556821
    H81.548839–0.548839
    H91.475093–0.475093
    H101.528941–0.528941
    H111.548839–0.548839
    H121.628839–0.628839
    下载: 导出CSV

    表 2  通过Bader电荷分析得到的I4/mmm (Li2YH5)在200 GPa的压力下, Li, Y和H原子剩余的价电子数量; σ(e)代表得失价电子数目(正值表示失去电子, 负值表示得到电子)

    Table 2.  Number of remaining valence electrons in Li, Y and H atoms of I4/mmm (Li2YH5) obtained by bader charge analysis under the pressure of 200 GPa; σ(e) represents the number of valence electrons gained and lost (positive means lost electrons, negative means gained electrons).

    原子剩余价电子数目得失电子情况σ(e)
    Li10.3095830.690417
    Li20.3098310.690169
    Li30.3095830.690417
    Li40.3095830.690417
    Y19.7580491.241951
    Y29.7580491.241951
    H11.548559–0.548559
    H21.518422–0.518422
    H31.518422–0.518422
    H41.548559–0.548559
    H51.488825–0.488825
    H61.548435–0.548435
    H71.518422–0.518422
    H81.518422–0.518422
    H91.548435–0.548435
    H101.488825–0.488825
    下载: 导出CSV
  • [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Shamp A, Zurek E 2017 Nov. Supercond. Mater. 3 14Google Scholar

    [3]

    Eremets M I, Trojan I A, Medvedev S A, Tse J S, Yao Y 2008 Science 319 1509Google Scholar

    [4]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. U S A. 106 17640Google Scholar

    [5]

    孙莹, 刘寒雨, 马琰铭 2021 物理学报 70 017407Google Scholar

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407Google Scholar

    [6]

    Bi T, Zarifi N, Terpstra T, Zurek E 2019 Reference Module in Chemistry, Molecular Science and Chemical Engineering

    [7]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [8]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [9]

    Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc Natl Acad Sci U S A. 114 6990Google Scholar

    [10]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [11]

    Wang C Z, Yi S, Cho J H 2019 Phys. Rev. B 100 060502Google Scholar

    [12]

    Kong P P, Minkov V S, Kuzovnikov M A, Besedin S P, Drozdov A P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Greenberg E, Knyazev D A, Eremets M I 2019 arXiv: 1909.10482

    [13]

    Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A, Dias R P 2021 Phys. Rev. Lett. 126 117003Google Scholar

    [14]

    Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M 2019 Phys. Rev. Lett. 123 097001Google Scholar

    [15]

    孙莹 2020 博士学位论文 (吉林: 吉林大学)

    Sun Y 2020 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [16]

    Grishakov K S, Degtyarenko N N, Mazur E A 2019 J. Exp. Theor. Phys. 128 105Google Scholar

    [17]

    Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C, Ma Y M 2015 Sci. Rep. 5 9948Google Scholar

    [18]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [19]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [20]

    Gao B, Gao P Y, Lu S H, Lv J, Wang Y C, Ma Y M 2019 Sci. Bull. 064 301Google Scholar

    [21]

    Kresse G G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [25]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.: Condens. Matter 21 084204Google Scholar

    [26]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [27]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [28]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [29]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter. 21 395502Google Scholar

    [30]

    Liu L L, Sun H J, Wang C Z, Lu W C 2017 J. Phys.: Condens. Matter 29 325401Google Scholar

    [31]

    Dias R P, Silvera I F 2017 Science 355 715Google Scholar

    [32]

    Mcmahon J M, Ceperley D M 2011 Phys. Rev. Lett. 106 165302Google Scholar

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究. 物理学报, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究. 物理学报, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [4] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [5] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展. 物理学报, 2021, 70(1): 017407. doi: 10.7498/aps.70.20202189
    [6] 万亚州, 高明, 李勇, 郭海波, 李拥华, 徐飞, 马忠权. 掺杂非晶氧化硅薄膜中三元化合态与电子结构的第一性原理计算. 物理学报, 2017, 66(18): 188802. doi: 10.7498/aps.66.188802
    [7] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [8] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究. 物理学报, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [9] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [10] 杨振辉, 王菊, 刘涌, 王慷慨, 苏婷, 郭春林, 宋晨路, 韩高荣. 锐钛矿相和金红石相Nb:TiO2电学性质的GGA(+U)法研究. 物理学报, 2014, 63(15): 157101. doi: 10.7498/aps.63.157101
    [11] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [12] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [13] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 物理学报, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [14] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [15] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [16] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [17] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  7033
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-09-07
  • 上网日期:  2021-12-23
  • 刊出日期:  2022-01-05

/

返回文章
返回