搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缪子多模态成像图像质量分析

霍勇刚 严江余 张全虎

引用本文:
Citation:

缪子多模态成像图像质量分析

霍勇刚, 严江余, 张全虎

Image quality evaluation of multimodal imaging of muon

Huo Yong-Gang, Yan Jiang-Yu, Zhang Quan-Hu
PDF
HTML
导出引用
  • 缪子多模态成像有效利用了宇宙线缪子与材料相互作用产生的散射信息以及产生次级诱发中子的缪子信息. 为对缪子多模态成像图像质量进行分析, 基于GEANT4程序设置了探测模型, 从缪子多重库仑散射模块和缪子诱发中子模块两部分对探测模型可靠性进行了验证, 开发了缪子多模态成像模拟程序, 得到了重建图像. 成像12 h可达到4 mm的空间分辨率, 成像时间在小时量级可清晰分辨边长10 cm的235U立方体和其他常见的高、中、低原子序数材料立方体. 经过12 h成像时间, 包覆模型的缪子散射成像图像会造成误判, 但缪子多模态成像图像能够正确反映235U材料存在. 不同成像时间内, 缪子多模态成像图像的结构相似性指标均优于单一成像方法成像图像. 研究结果表明与缪子散射成像图像和诱发中子符合的缪子成像图像相比, 缪子多模态成像图像有更好的成像质量, 能够适应更复杂的成像场景, 在特殊核材料的检测识别方面更有优势.
    Both the information about the scattering of muons due to their interaction with material and the information about the material-stopped muons generating secondary induced neutrons effectively are used for multimodal imaging of muon. In order to evaluate the image quality of multimodal imaging of muon, the detection model is established based on Geant4 and the reliability of the detection model is verified. Both the multiple Coulomb scattering module and the muon induced neutron module prove to be reliable. The multimodal imaging simulation program is developed, and the images are reconstructed on the basis of the simulated data. Four imaging models are developed. The first model is a line pair model used to study the spatial resolution of reconstructed images with imaging time ranging from two hours to two weeks. The line pair model is composed of 235U and the length of each line pair is set to be 100 mm. The cross sections are set to be 42, 42, 62, 62, 102, 102, 202, and 202 mm2, respectively. The second model is a cube model used to study the material resolution of reconstructed images with imaging time ranging from one hour to twelve hours. The side length of each cube is 100 mm. The third model is the cladding model used to test the reliability of multimodal imaging images in complex shielding situations. The outermost layer is of lead, with the side length being 140 mm and the thickness 40 mm. The middle layer is of iron, with the side length being 100 mm and the thickness 40 mm. The innermost layer of 235U, with the side length being 60 mm. The last letter model is used to calculate the structural similarity of reconstructed images, with imaging time ranging from half an hour to twelve hours. The letter model is made of 235U and consists of cubes with side length of 50 mm. The letters “E” and “P” are made up of 16 cubes and 15 cubes respectively. The spatial resolution reaches 4 mm when imaging time is within 12 hours. The 235U and other common high-z, medium-z, and low-z material can be distinguished when imaging time is on the order of hours. Muon scattering imaging image of the cladding model will cause misjudgment. However, the multimodal imaging image can correctly reflect the existence of 235U. The structure similarity between the reconstructed image and the reference image in different imaging times proves that multimodal imaging has higher quality than single imaging method. The study indicates that the multimodal imaging of muon has better imaging quality, can adapt to more complex imaging scenes and has more advantages in the detection and recognition of special nuclear material than muon imaging method with single interaction information.
      通信作者: 张全虎, zhangqh_102@sina.com
      Corresponding author: Zhang Quan-Hu, zhangqh_102@sina.com
    [1]

    Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar

    [2]

    罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar

    Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar

    [3]

    Shukla P, Sankrith S 2018 Int. J. Mod. Phys. A 33 1850175Google Scholar

    [4]

    于百蕙 2016 博士学位论文 (北京: 清华大学)

    Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [5]

    Lorenzo B, Raffaello D A, Andrea G 2020 Rev. Phys. 5 100038Google Scholar

    [6]

    Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024

    [7]

    Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar

    [8]

    Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar

    [9]

    Durham J M, Poulson D, Plaud-Ramos K, Bacon J, Chichester D L, Guardincerri E, Morris C L, Plaud-Ramos K, Schwendiman W, Tolman J D, Winston P 2018 Phys. Rev. Appl. 9 044013Google Scholar

    [10]

    Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar

    [11]

    Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277

    [12]

    智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar

    Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar

    [13]

    Schultz L J, Borozdin K N, Gomez J J, Hogan G E, Mcgill J A, Morris C L, Priedhorsky W C, Saunders A, Teasdale M E 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 519 687Google Scholar

    [14]

    Baesso P, Cussans D, Glaysher P, Thomay C, Vassallo C, Velthuis J, Quillin S, Robertson S, Steer C 2012 J. Instrum. 7 P11018Google Scholar

    [15]

    Gnanvo K, Grasso L, Hohlmann M, Locke J B, Quintero A, Mitra D 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 652 16Google Scholar

    [16]

    Chen X L, Wang Y, Chen G, Han D, Guo B, Yu Y, Zhang Q, Lyu P, Wang F 2020 J. Instrum. 15 C03012Google Scholar

    [17]

    Schultz L J, Borozdin K N, Gomez J J, Hogan G E, Mc Gill J A, Morris C L, Priedhorsky W C, Saunders A, Teasdale M E 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 519 687

    [18]

    Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar

    [19]

    Hou L J, Huo Y G, Zuo W M, Yao Q X, Yang J Q, Zhang Q H 2020 Nucl. Eng. Technol. 53 208

    [20]

    Warren G A, Caggiano J A, Bertozzi W, Korbly S, Ledoux R J, Park W H 2010 IEEE Trans. Nucl. Sci. 57 317Google Scholar

    [21]

    Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109Google Scholar

    [22]

    Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos, Los Alamos National Lab, LA-UR-13-28292 [R])

    [23]

    Volker E, Oberacker, Umar A S, Karpeshin F F 2004 arXiv: nucl-th/0403087 [nucl-th]

    [24]

    Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A new method of passive counting of nuclear missile warheads -a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])

    [25]

    Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006

    [26]

    何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)

    He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [27]

    Yan J Y, Zhang Q H, Huo Y G http://kns.cnki.net/kcms/detail/11.1958.O4.20210529.1750.002.html [2021-06-08]

    [28]

    Wang Z, Bovik A, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [29]

    Ide K, Becchetti M F, Flaska M, Poitrasson-Riviere A, Hamel M C, Polack J K, Lawrence C C, Clarke S D, Pozzi S A 2012 Nucl. Instrum. Methods Phys. Res., Sect. A 694 24Google Scholar

    [30]

    李凯文, 徐琳, 陈强 2020 计算机科学 47 159Google Scholar

    Li K W, Xu L, Chen Q 2020 Comput. Sci. 47 159Google Scholar

    [31]

    何凯, 牛俊慧, 沈成南, 卢雯霞 2018 天津大学学报 51 763

    He K, Niu J H, Shen C N, Lu W X 2018 J. Tianjin Univ. 51 763

    [32]

    肖洒 2018 博士学位论文(绵阳: 中国工程物理研究院)

    Xiao S 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [33]

    Malyshkina Y, Pshenichnova I, Mishustina I, Hughesd T, Heidd O, Greiner W 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 289 79Google Scholar

    [34]

    Kasztelan M, Jedrzejczak K, Szabelski J 2019 Mod. Phys. Lett. A 6 1950046

  • 图 1  探测模型设置

    Fig. 1.  Detecting model setting.

    图 2  缪子多模态成像图解(绿色为发生散射的有效缪子, 蓝色为产生次级诱发中子的有效缪子)

    Fig. 2.  Diagram of multimodal imaging of muon (Green trajectories are the effective scattering muons and blue trajectory is the effective muon producing secondary induced neutrons).

    图 3  SSIM评价算法框架

    Fig. 3.  Flow chart of SSIM objective evaluation.

    图 4  散射模块验证模型

    Fig. 4.  Validation model of scattering module.

    图 5  4 GeV缪子入射10 cm厚不同材料的散射角分布 (a) 立体角分布; (b) 平面角分布

    Fig. 5.  Scattering angle distribution of 4 GeV muons incident on different materials with a thickness of 10 cm: (a) Solid angle distribution; (b) plane angle distribution.

    图 6  诱发中子模块验证模型

    Fig. 6.  Validation model of induced neutrons.

    图 7  2 GeV负缪子入射不同铀立方体后产生的次级中子能谱, HEU(红色)、LEU(绿色)、DU(蓝色)

    Fig. 7.  Secondary neutron spectrum that result from negative muon : HEU (red), LEU (green), DU (blue).

    图 8  成像模型 (a) 线对模型; (b) 物块模型; (c) 包覆模型; (d)字母模型

    Fig. 8.  Imaging models: (a) Line pair model; (b) object model; (c) cladding model; (d) letter model.

    图 9  不同成像时间内线对模型成像结果

    Fig. 9.  Imaging results of the line pair model in different imaging time.

    图 10  不同成像时间内物块模型成像结果

    Fig. 10.  Imaging results of the object model in different imaging time.

    图 11  不同成像时间内物块模型的重建多模态信息量

    Fig. 11.  Amount of reconstructed multimodal information of the object model in different imaging time.

    图 12  铅立方体和包覆模型成像结果 (a) 铅立方体的散射成像图像; (b) 包覆模型的散射成像图像; (c) 包覆模型的多模态成像图像

    Fig. 12.  Imaging results of lead cube and cladding model: (a) Scattering imaging image of lead cube; (b) scattering imaging image of cladding model; (c) multimodal imaging image of cladding model.

    图 13  参考图像和3种成像方法成像灰度图

    Fig. 13.  Reference image and gray images of three imaging methods.

    图 14  不同成像时间内3种成像方法成像图像的SSIM计算结果

    Fig. 14.  SSIM calculation results of three imaging methods in different imaging time.

    表 1  4 GeV缪子穿过10 cm厚不同材料的散射角

    Table 1.  Multiple scattering for 4 GeV muons passing through 10 cm of various materials.

    材料L0/cm实验值θ/rad理论值θ/mrad相对误差/%
    U0.3221.5821.490.42
    Pb0.5615.9215.940.13
    Fe1.768.678.640.35
    Al8.893.743.623.31
    下载: 导出CSV

    表 2  铀立方体的中子出射率

    Table 2.  Rate of neutrons that are emitted from bare cubes of uranium.

    出射中子数/入射缪子数
    HEULEUDU
    1 MeV负缪子30.811.79.35
    1 MeV正缪子0.05380.01930.0164
    2 GeV负缪子0.02910.01520.0116
    2 GeV正缪子0.02860.01300.0124
    下载: 导出CSV
  • [1]

    Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar

    [2]

    罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar

    Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar

    [3]

    Shukla P, Sankrith S 2018 Int. J. Mod. Phys. A 33 1850175Google Scholar

    [4]

    于百蕙 2016 博士学位论文 (北京: 清华大学)

    Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [5]

    Lorenzo B, Raffaello D A, Andrea G 2020 Rev. Phys. 5 100038Google Scholar

    [6]

    Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024

    [7]

    Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar

    [8]

    Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar

    [9]

    Durham J M, Poulson D, Plaud-Ramos K, Bacon J, Chichester D L, Guardincerri E, Morris C L, Plaud-Ramos K, Schwendiman W, Tolman J D, Winston P 2018 Phys. Rev. Appl. 9 044013Google Scholar

    [10]

    Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar

    [11]

    Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277

    [12]

    智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar

    Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar

    [13]

    Schultz L J, Borozdin K N, Gomez J J, Hogan G E, Mcgill J A, Morris C L, Priedhorsky W C, Saunders A, Teasdale M E 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 519 687Google Scholar

    [14]

    Baesso P, Cussans D, Glaysher P, Thomay C, Vassallo C, Velthuis J, Quillin S, Robertson S, Steer C 2012 J. Instrum. 7 P11018Google Scholar

    [15]

    Gnanvo K, Grasso L, Hohlmann M, Locke J B, Quintero A, Mitra D 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 652 16Google Scholar

    [16]

    Chen X L, Wang Y, Chen G, Han D, Guo B, Yu Y, Zhang Q, Lyu P, Wang F 2020 J. Instrum. 15 C03012Google Scholar

    [17]

    Schultz L J, Borozdin K N, Gomez J J, Hogan G E, Mc Gill J A, Morris C L, Priedhorsky W C, Saunders A, Teasdale M E 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 519 687

    [18]

    Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar

    [19]

    Hou L J, Huo Y G, Zuo W M, Yao Q X, Yang J Q, Zhang Q H 2020 Nucl. Eng. Technol. 53 208

    [20]

    Warren G A, Caggiano J A, Bertozzi W, Korbly S, Ledoux R J, Park W H 2010 IEEE Trans. Nucl. Sci. 57 317Google Scholar

    [21]

    Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109Google Scholar

    [22]

    Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos, Los Alamos National Lab, LA-UR-13-28292 [R])

    [23]

    Volker E, Oberacker, Umar A S, Karpeshin F F 2004 arXiv: nucl-th/0403087 [nucl-th]

    [24]

    Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A new method of passive counting of nuclear missile warheads -a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])

    [25]

    Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006

    [26]

    何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)

    He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [27]

    Yan J Y, Zhang Q H, Huo Y G http://kns.cnki.net/kcms/detail/11.1958.O4.20210529.1750.002.html [2021-06-08]

    [28]

    Wang Z, Bovik A, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [29]

    Ide K, Becchetti M F, Flaska M, Poitrasson-Riviere A, Hamel M C, Polack J K, Lawrence C C, Clarke S D, Pozzi S A 2012 Nucl. Instrum. Methods Phys. Res., Sect. A 694 24Google Scholar

    [30]

    李凯文, 徐琳, 陈强 2020 计算机科学 47 159Google Scholar

    Li K W, Xu L, Chen Q 2020 Comput. Sci. 47 159Google Scholar

    [31]

    何凯, 牛俊慧, 沈成南, 卢雯霞 2018 天津大学学报 51 763

    He K, Niu J H, Shen C N, Lu W X 2018 J. Tianjin Univ. 51 763

    [32]

    肖洒 2018 博士学位论文(绵阳: 中国工程物理研究院)

    Xiao S 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [33]

    Malyshkina Y, Pshenichnova I, Mishustina I, Hughesd T, Heidd O, Greiner W 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 289 79Google Scholar

    [34]

    Kasztelan M, Jedrzejczak K, Szabelski J 2019 Mod. Phys. Lett. A 6 1950046

  • [1] 王德鑫, 张蕊, 尉德康, 那蕙, 姚张浩, 吴凌赫, 张苏雅拉吐, 梁泰然, 黄美容, 王志龙, 白宇, 黄永顺, 杨雪, 张嘉文, 刘梦迪, 马蔷, 于静, 纪秀艳, 于伊丽琦, 邵学鹏. 基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241704
    [2] 李强, 李样, 吕游, 潘子文, 鲍煜. 中国散裂中子源缪子谱仪及其应用展望. 物理学报, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] 王颖, 殳蕾. μSR实验进展与缪子源发展趋势. 物理学报, 2024, 73(19): 197601. doi: 10.7498/aps.73.20240940
    [4] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [5] 贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌. 中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析. 物理学报, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [6] 李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友. 基于缪子离散能量的材料鉴别实验研究. 物理学报, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [7] 张建鸣, 李志伟, 刘芳, 李景太, 冒鑫, 程雅苹, 庞捷, 冯鑫茁, 倪四道, 欧阳晓平, 韩然. 多重库仑散射对小尺度物体缪子透射成像精度的影响. 物理学报, 2023, 72(2): 021401. doi: 10.7498/aps.72.20221792
    [8] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [9] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [10] 米立功, 谢泉, 张利, 吴忠组. 基本费米子质量和代问题. 物理学报, 2021, 70(23): 231201. doi: 10.7498/aps.70.20210854
    [11] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [12] 严江余, 张全虎, 霍勇刚. 基于散射和次级诱发中子的缪子多模态成像. 物理学报, 2021, 70(19): 191401. doi: 10.7498/aps.70.20210804
    [13] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [14] 姚军财, 申静. 基于图像内容对比感知的图像质量客观评价. 物理学报, 2020, 69(14): 148702. doi: 10.7498/aps.69.20200335
    [15] 姚军财, 刘贵忠. 基于图像内容视觉感知的图像质量客观评价方法. 物理学报, 2018, 67(10): 108702. doi: 10.7498/aps.67.20180168
    [16] 蔚涛, 罗懋康, 华云. 分数阶质量涨落谐振子的共振行为. 物理学报, 2013, 62(21): 210503. doi: 10.7498/aps.62.210503
    [17] 蔚涛, 张路, 罗懋康. 具有涨落质量的线性谐振子的共振行为. 物理学报, 2013, 62(12): 120504. doi: 10.7498/aps.62.120504
    [18] 何祚庥, 林大航, 赵培贞. 考虑胶子质量的重夸克偶素位模型. 物理学报, 1982, 31(4): 525-531. doi: 10.7498/aps.31.525
    [19] 罗辽复, 陆埮, 杨国琛. 论反常作用、轻子结构和μ-e质量差. 物理学报, 1966, 22(3): 334-340. doi: 10.7498/aps.22.334
    [20] 郑吉母, 蒋孟闵. 落雪山宇宙线强度的气压系数. 物理学报, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
计量
  • 文章访问数:  5530
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-10-01
  • 上网日期:  2022-01-12
  • 刊出日期:  2022-01-20

/

返回文章
返回