搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海内孤立波动态传播过程中声波模态强度起伏规律

李沁然 孙超 谢磊

引用本文:
Citation:

浅海内孤立波动态传播过程中声波模态强度起伏规律

李沁然, 孙超, 谢磊

Modal intensity fluctuation during dynamic propagation of internal solitary waves in shallow water

Li Qin-Ran, Sun Chao, Xie Lei
PDF
HTML
导出引用
  • 内孤立波是一种常见于浅海海域的非线性内波, 具有振幅大、周期短和流速强等特点, 它通过扰动水体中的温盐分布使声速剖面产生明显的距离依赖性, 进而影响水下声传播特性. 内波自生成后通常以1 m/s 量级的速度传播, 运动的内波使声传播路径上的声波模态能量在空间和时间上剧烈起伏. 本文定义模态强度为模态系数模值 (模态幅度) 的平方, 并用其衡量各阶模态所含声能量的大小. 文中基于耦合简正波理论, 推导了内波运动时声波模态强度起伏的表达式, 将模态强度表征为振荡项和趋势项的线性叠加. 以往的工作大多局限于单独从时域或频域研究内波运动时声波模态强度的时变规律, 本文则结合短时傅里叶变换在时频平面上揭示了模态强度的起伏机理. 理论推导和数值仿真均表明内孤立波使各阶声波模态之间发生能量交换, 即模态耦合. 内波的动态传播进一步引起模态干涉, 这种干涉效应表现为模态强度中的振荡项并使模态强度随时间快速起伏. 受模态剥离效应 (不同阶模态之间衰减系数的差异) 的影响, 趋势项的幅度随时间不断变化, 进而对模态干涉引起的振荡叠加了时变的偏置. 模态强度的整体走势和振荡项中各频率分量振幅的时变特征均与模态衰减密切相关. 同时, 本文使用深度积分声强作为总接收声场强度的度量, 研究了内波运动时模态强度起伏对接收阵位置处声能量的影响. 结果表明, 能量较大且起伏剧烈的模态强度将主导总接收声强的变化.
    Internal solitary wave (ISW) is a kind of nonlinear internal wave commonly observed in the shallow water, which has the characteristics of large amplitude, short period and strong current velocity. With the distribution of the temperature and the salinity in the water column perturbed by ISWs, the sound speed profile becomes range-dependent, and thus affecting the characteristics of the underwater acoustic propagation. The ISWs usually propagate at a speed of the order of 1 m/s , and moving internal waves cause the energy in each acoustic mode to fluctuate dramatically. In this paper, the modal intensity is defined as the squared modulus of the modal coefficient, and is used to measure the sound energy in each mode. Based on the coupled mode theory, the expression of the acoustic modal intensity during the propagation of internal waves is derived in this paper, and the modal intensity is taken as the linear superposition of the oscillating term and the trend term. Most of previous researches were limited to the study of the time-varying characteristics of the acoustic modal intensity during the propagation of internal waves in the time domain or frequency domain. In this paper, the mechanism of modal intensity fluctuations is studied simultaneously in the time domain and the frequency domain with the aid of the short-time Fourier transform. Both the theoretical derivation and the numerical simulation show that the internal solitary wave gives rise to the energy transfer among acoustic modes, i.e., the mode coupling. The dynamic propagation of internal waves further leads to the modal interference, which behaves as an oscillating term in the modal intensity, and causes the modal intensity to fluctuate rapidly with time. The amplitude of the trend term changes with time due to the mode stripping (the difference in attenuation coefficients between different modes), which in turn adds a time-varying offset to the oscillations induced by the modal interference. The trend of the modal intensity and the time-varying characteristics of the amplitude of each frequency component in the oscillating term are closely associated with the modal attenuation. Meanwhile, the depth-integrated intensity is chosen as the measure of the total received acoustic intensity, and the influences of modal intensity fluctuations on the acoustic energy at the receivers during the propagation of internal waves are studied. It is demonstrated that the modal intensity with high energy which oscillates most dramatically will dominate the temporal variation of the received acoustic energy.
      通信作者: 谢磊, xielei2014@mail.nwpu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11904342) 资助的课题
      Corresponding author: Xie Lei, xielei2014@mail.nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904342)
    [1]

    方欣华, 杜涛 2005 海洋内波基础和中国海内波 (青岛: 中国海洋大学出版社) 第109页

    Fang X H, Du T 2005 Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p109 (in Chinese)

    [2]

    Magalhaes J M, da Silva J C B, Buijsman M C 2020 Sci. Rep. 10 1Google Scholar

    [3]

    Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F, Tang T Y 2004 IEEE J. Oceanic Eng. 29 1249Google Scholar

    [4]

    Duda T F, Lynch J F, Newhall A E, Wu L X, Chiu C S 2004 IEEE J. Oceanic Eng. 29 1264Google Scholar

    [5]

    Oba R, Finette S 2002 J. Acoust. Soc. Am. 111 769Google Scholar

    [6]

    Duda T F 2006 J. Acoust. Soc. Am. 119 3717Google Scholar

    [7]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, and Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 201Google Scholar

    [8]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 221Google Scholar

    [9]

    Zhou J X, Zhang X Z, Rogers P H 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [10]

    Duda T F, Preisig J C 1999 IEEE J. Oceanic Eng. 24 16Google Scholar

    [11]

    Apel J R, Badiey M, Chiu C S, Finette S, Headrick R, Kemp J, Lynch J F, Newhall A, Orr M H, Pasewark B H, Tielbuerger D, Turgut A, von der Heydt K, Wolf S 1997 IEEE J. Oceanic Eng. 22 465Google Scholar

    [12]

    Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655Google Scholar

    [13]

    刘进忠, 王宁, 高大治 2006 声学学报 31 322Google Scholar

    Liu J Z, Wang N, Gao D Z 2006 Acta Acustia 31 322Google Scholar

    [14]

    胡涛, 王臻, 郭圣明, 马力 2020 哈尔滨工程大学学报 41 1518

    Hu T, Wang Z, Guo S M, Ma L 2020 J. Harbin Eng. Univ. 41 1518

    [15]

    Finette S, Orr M H, Turgut A, Apel J R, Badiey M, Chiu C S, Headrick R H, Kemp J N, Lynch J F, Newhall A E, von der Heydt K, Pasewark B, Wolf S N, Tielbuerger D 2000 J. Acoust. Soc. Am. 108 957Google Scholar

    [16]

    Apel J R 2003 J. Phys. Oceanogr. 33 2247Google Scholar

    [17]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [18]

    Dozier L B, Tappert F D 1978 J. Acoust. Soc. Am. 63 353Google Scholar

    [19]

    秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Boris K, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustia 41 145

    [20]

    宋文华, 胡涛, 郭圣明, 马力 2014 物理学报 63 194303Google Scholar

    Song W H, Hu T, Guo S M, Ma L 2014 Acta Phys. Sin. 63 194303Google Scholar

    [21]

    Song W H, Wang N, Gao D Z, Wang H Z, Hu T, Guo S M 2017 J. Acoust. Soc. Am. 142 1848Google Scholar

    [22]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188Google Scholar

    [23]

    Sperry B J 1999 Ph. D. Dissertation (Woods Hole: Massachussetts Institute of Technology/Woods Hole Oceanographic Institution)

    [24]

    Colosi J A 2016 Sound Propagation Through the Stochastic Ocean (Cambridge: Cambridge University Press) p83

    [25]

    Buck J R, Preisig J C, Wage K E 1998 J. Acoust. Soc. Am. 103 1813Google Scholar

    [26]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (Boston: Springer) pp83–85

    [27]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p85, 473

    [28]

    Lee D, McDaniel S T 1988 Ocean Acoustic Propagation by Finite Difference Methods (Amsterdam: Elsevier) p386

    [29]

    Porter M B 1992 The KRAKEN Normal Mode Program (Washington DC: Naval Research Laboratory)

  • 图 1  声源与接收器的布放位置及内波运动情况

    Fig. 1.  Locations of the source and receivers and the details of internal wave motion.

    图 2  波导环境声速剖面 (a) 背景声速剖面; (b) 内波扰动后的声速剖面, 白色虚线标注了内波波形

    Fig. 2.  Sound speed profile in the waveguide: (a) Background sound speed profile; (b) sound speed profile perturbed by internal waves, with the waveform of internal waves indicated by white dashed lines.

    图 3  模态系数耦合矩阵的模值$ |{\boldsymbol{R}}| $ (a) 无内波; (b) 有内波

    Fig. 3.  Modulus of the coupling matrix $ |{\boldsymbol{R}}| $: (a) Internal waves are not present in the waveguide; (b) internal waves are present in the waveguide.

    图 4  无内波时模态强度随距离的变化 (a) 内波波形; (b) 模态强度变化

    Fig. 4.  Modal intensity variation with range when internal waves are not present in the waveguide: (a) Waveform of internal waves; (b) modal intensity variation.

    图 5  内波位于$ r_{\rm{p}} = 3\; {\rm{km}} $时模态强度随距离的变化 (a) 内波波形; (b) 模态强度变化

    Fig. 5.  Modal intensity variation with range when internal waves are at $ r_{\rm{p }}= 3\; {\rm{km}} $: (a) Waveform of internal waves; (b) modal intensity variation.

    图 6  内波位于$ r_{\rm{p}} = 2.8\; {\rm{km}} $时模态强度随距离的变化 (a) 内波波形; (b) 模态强度变化

    Fig. 6.  Modal intensity variation with range when internal waves are at $ r_{\rm{p}} = 2.8\; {\rm{km}} $: (a) Waveform of internal waves; (b) modal intensity variation.

    图 7  第 1 阶接收模态强度时频分析结果 (a) 时间序列; (b) 时频图; (c) 频谱

    Fig. 7.  Time-frequency analysis results of the first received mode: (a) Time series; (b) time-frequency plot; (c) frequency spectrum.

    图 8  第 3 阶接收模态强度时频分析结果 (a) 时间序列; (b) 时频图; (c) 频谱

    Fig. 8.  Time-frequency analysis results of the third received mode: (a) Time series; (b) time-frequency plot; (c) frequency spectrum.

    图 9  第1阶 (蓝色曲线) 和第3阶 (红色曲线) 接收模态强度时频图中0 Hz成分随时间的变化

    Fig. 9.  Variation of the 0 Hz-component in the time-frequency plane of the first (blue line) and the third (red line) modal intensity.

    图 10  各阶传播模态归一化的激励程度和衰减系数: (a) 模态激励; (b) 模态衰减

    Fig. 10.  Normalized excitation and attenuation of each propagating mode: (a) Modal excitation; (b) modal attenuation.

    图 11  (a) 第$ l = 3 $阶接收模态强度中各直流分量的归一化时不变幅度$ B_{ln}|_{l = 3} $; (b) 第$ l = 3 $阶接收模态强度中归一化的直流成分

    Fig. 11.  (a) Normalized time-invariant amplitude of each DC component in the third modal intensity; (b) normalized DC part in the third modal intensity.

    图 12  (a) 各阶传播模态强度随时间的变化; (b) 深度积分声强随时间的变化

    Fig. 12.  (a) Temporal variations of modal intensities of propagating modes; (b) temporal variation of the depth-integrated intensity.

    表 1  深度积分声强和各阶模态强度起伏的均值和标准差

    Table 1.  Mean values and the standard deviations of the depth-integrated intensity and the modal intensities.

    声学量均值标准差
    $ \bar I(T) \times{r_{\rm{e}}} $ 0.0694 0.0116
    $|a_l(T)|^{2}_{l=1}\times{r_{\rm{e}}}$ 0.0514 0.0144
    $|a_l(T)|^{2}_{l=2}\times{r_{\rm{e}}}$ 0.0151 0.0079
    $|a_l(T)|^{2}_{l=3}\times{r_{\rm{e}}}$ 0.0024 0.0026
    $|a_l(T)|^{2}_{l=4}\times{r_{\rm{e}}}$ 3.60 × 10–4 4.45 × 10–4
    $|a_l(T)|^{2}_{l=5}\times{r_{\rm{e}}}$ 2.96 × 10–4 3.87 × 10–4
    $|a_l(T)|^{2}_{l=6}\times{r_{\rm{e}}}$ 4.43 × 10–5 8.52 × 10–5
    $ |a_l(T)|^{2}_{l=7}\times{r_{\rm{e}}} $ 4.30 × 10–6 1.22 × 10–5
    $ |a_l(T)|^{2}_{l=8}\times{r_{\rm{e}}} $ 7.34 × 10–9 3.11 × 10–8
    下载: 导出CSV
  • [1]

    方欣华, 杜涛 2005 海洋内波基础和中国海内波 (青岛: 中国海洋大学出版社) 第109页

    Fang X H, Du T 2005 Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p109 (in Chinese)

    [2]

    Magalhaes J M, da Silva J C B, Buijsman M C 2020 Sci. Rep. 10 1Google Scholar

    [3]

    Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F, Tang T Y 2004 IEEE J. Oceanic Eng. 29 1249Google Scholar

    [4]

    Duda T F, Lynch J F, Newhall A E, Wu L X, Chiu C S 2004 IEEE J. Oceanic Eng. 29 1264Google Scholar

    [5]

    Oba R, Finette S 2002 J. Acoust. Soc. Am. 111 769Google Scholar

    [6]

    Duda T F 2006 J. Acoust. Soc. Am. 119 3717Google Scholar

    [7]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, and Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 201Google Scholar

    [8]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 221Google Scholar

    [9]

    Zhou J X, Zhang X Z, Rogers P H 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [10]

    Duda T F, Preisig J C 1999 IEEE J. Oceanic Eng. 24 16Google Scholar

    [11]

    Apel J R, Badiey M, Chiu C S, Finette S, Headrick R, Kemp J, Lynch J F, Newhall A, Orr M H, Pasewark B H, Tielbuerger D, Turgut A, von der Heydt K, Wolf S 1997 IEEE J. Oceanic Eng. 22 465Google Scholar

    [12]

    Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655Google Scholar

    [13]

    刘进忠, 王宁, 高大治 2006 声学学报 31 322Google Scholar

    Liu J Z, Wang N, Gao D Z 2006 Acta Acustia 31 322Google Scholar

    [14]

    胡涛, 王臻, 郭圣明, 马力 2020 哈尔滨工程大学学报 41 1518

    Hu T, Wang Z, Guo S M, Ma L 2020 J. Harbin Eng. Univ. 41 1518

    [15]

    Finette S, Orr M H, Turgut A, Apel J R, Badiey M, Chiu C S, Headrick R H, Kemp J N, Lynch J F, Newhall A E, von der Heydt K, Pasewark B, Wolf S N, Tielbuerger D 2000 J. Acoust. Soc. Am. 108 957Google Scholar

    [16]

    Apel J R 2003 J. Phys. Oceanogr. 33 2247Google Scholar

    [17]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [18]

    Dozier L B, Tappert F D 1978 J. Acoust. Soc. Am. 63 353Google Scholar

    [19]

    秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Boris K, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustia 41 145

    [20]

    宋文华, 胡涛, 郭圣明, 马力 2014 物理学报 63 194303Google Scholar

    Song W H, Hu T, Guo S M, Ma L 2014 Acta Phys. Sin. 63 194303Google Scholar

    [21]

    Song W H, Wang N, Gao D Z, Wang H Z, Hu T, Guo S M 2017 J. Acoust. Soc. Am. 142 1848Google Scholar

    [22]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188Google Scholar

    [23]

    Sperry B J 1999 Ph. D. Dissertation (Woods Hole: Massachussetts Institute of Technology/Woods Hole Oceanographic Institution)

    [24]

    Colosi J A 2016 Sound Propagation Through the Stochastic Ocean (Cambridge: Cambridge University Press) p83

    [25]

    Buck J R, Preisig J C, Wage K E 1998 J. Acoust. Soc. Am. 103 1813Google Scholar

    [26]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (Boston: Springer) pp83–85

    [27]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p85, 473

    [28]

    Lee D, McDaniel S T 1988 Ocean Acoustic Propagation by Finite Difference Methods (Amsterdam: Elsevier) p386

    [29]

    Porter M B 1992 The KRAKEN Normal Mode Program (Washington DC: Naval Research Laboratory)

  • [1] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型. 物理学报, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [3] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性. 物理学报, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [4] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [5] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [6] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法. 物理学报, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [7] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [8] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [9] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [10] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [11] 张泽众, 骆文于, 庞哲, 周益清. 孤子内波环境下三维声传播建模. 物理学报, 2019, 68(20): 204302. doi: 10.7498/aps.68.20190478
    [12] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [13] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [14] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [15] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [16] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [17] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [18] 黄文昊, 尤云祥, 王旭, 胡天群. 有限深两层流体中内孤立波造波实验及其理论模型. 物理学报, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [19] 杜辉, 魏岗, 张原铭, 徐小辉. 内孤立波沿缓坡地形传播特性的实验研究. 物理学报, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [20] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
计量
  • 文章访问数:  4888
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-09-28
  • 上网日期:  2022-01-01
  • 刊出日期:  2022-01-20

/

返回文章
返回