搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合虚拟单像素成像解卷积的双边照明光片荧光显微技术

胡金虎 林丹樱 张炜 张晨爽 屈军乐 于斌

引用本文:
Citation:

结合虚拟单像素成像解卷积的双边照明光片荧光显微技术

胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌

Dual-sided illumination light-sheet fluorescence microscopy with virtual single-pixel imaging deconvolution

Hu Jin-Hu, Lin Dan-Ying, Zhang Wei, Zhang Chen-Shuang, Qu Jun-Le, Yu Bin
PDF
HTML
导出引用
  • 光片荧光显微术(light-sheet fluorescence microscopy, LSFM)采用薄片光束从侧面激发样品, 在垂直于光片方向上进行成像, 具有成像速度快、光学层析能力强以及光漂白和光毒性低等优点, 适用于对较大活体生物样品进行高质量、长时间三维动态观测. 然而, 传统高斯光束LSFM存在分辨率低和成像视场小的问题. 本文在双边照明LSFM的基础上, 结合虚拟单像素成像解卷积技术, 提出了一种大视场高分辨双边照明LSFM, 实现了视场和分辨率的同时提升. 设计和搭建了双边照明LSFM, 开展了荧光珠和转基因斑马鱼样品的三维光切片显微成像实验, 实验结果证明了系统的三维高分辨成像能力, 对于大视场、高分辨LSFM的发展和应用具有重要意义.
    In light-sheet fluorescence microscopy (LSFM) a thin light sheet is used to excite the specimen from the side and imaging is performed in the direction perpendicular to the light-sheet. It has the advantages of fast imaging speed, high optical sectioning capability and low photobleaching and phototoxicity to samples. Therefore, it is suitable for high-quality, long-term three-dimensional dynamic observation of large living biological samples. However, the traditional Gaussian light sheet illumination microscopy technology has the problems of small imaging field of view and low spatial resolution. Based on the existing dual-sided illumination LSFM, a large field of view and high resolution LSFM combined with virtual single-pixel imaging deconvolution is presented in this paper, which improves the field of view and resolution of LSFM simultaneously. The relevant microscope is designed and built, and three-dimensional optical sectioning imaging experiments on fluorescent beads and transgenic zebrafish standard samples are carried out. The experimental results prove the three-dimensional high resolution imaging capability of the microscope, which is of great significance in developing the large field of view and high resolution LSFM.
      通信作者: 林丹樱, dylin@szu.edu.cn ; 于斌, yubin@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61975131, 61775144, 61835009)和深圳市基础研究项目(批准号: JCYJ20200109105411133, JCYJ20170412105003520, JCYJ20180305125649693)资助的课题.
      Corresponding author: Lin Dan-Ying, dylin@szu.edu.cn ; Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 61775144, 61835009) and the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20200109105411133, JCYJ20170412105003520, JCYJ20180305125649693).
    [1]

    Power R M, Huisken J 2017 Nat. Methods 14 360Google Scholar

    [2]

    Royer L A, Lemon W C, Chhetri R K, Wan Y N, Coleman M, Myers E W, Keller P J 2016 Nat. Biotechnol. 34 1267Google Scholar

    [3]

    Voie A H, Burns D H, Spelman F A 1993 J. Microsc-Oxford 170 229Google Scholar

    [4]

    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E H K 2004 Science 305 1007Google Scholar

    [5]

    Swoger J, Huisken J, Stelzer E H K 2003 Opt. Lett. 28 1654Google Scholar

    [6]

    Krzic U, Gunther S, Saunders T E, Streichan S J, Hufnagel L 2012 Nat. Methods 9 730Google Scholar

    [7]

    Keller P J, Schmidt A D, Wittbrodt J, Stelzer E H K 2008 Science 322 1065Google Scholar

    [8]

    Truong T V, Supatto W, Koos D S, Choi J M, Fraser S E 2011 Nat. Methods 8 757Google Scholar

    [9]

    Liu S, Nie J, Li Y S, Yu T T, Zhu D, Fei P 2017 J. Innovative Opt. Health. Sci. 10 1743006Google Scholar

    [10]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417Google Scholar

    [11]

    Gao L, Shao L, Chen B C, Betzig E 2014 Nat. Protoc. 9 1083Google Scholar

    [12]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladό C, Ferrier D E K, Čižmár T, Gunn-Moore F J, Dholakia K 2014 Nat. Methods 11 541Google Scholar

    [13]

    Yang Z Y, Prokopas M, Nylk J, Coll-Lladό C, Gunn-Moore F J, Ferrier D E K, Vettenburg T, Dholakia K 2014 Biomed. Opt. Express 5 3434Google Scholar

    [14]

    Jia H, Yu X H, Yang Y L, Zhou X, Yan S H, Liu C, Lei M, Yao B L 2019 J. Biophotonics 12 e201800094Google Scholar

    [15]

    Gao L 2015 Opt. Express 23 6102Google Scholar

    [16]

    Westphal V, Rizzoli S O, Lauterbach M A, Kamin D, Jahn R, Hell S W 2008 Science 320 246Google Scholar

    [17]

    Li D, Shao L, Chen B C, Zhang X, Zhang M S, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P Y, Betzig E 2015 Science 349 aab3500Google Scholar

    [18]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [19]

    Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar

    [20]

    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J 2009 Proc. Natl. Acad. Sci. U. S. A. 106 22287Google Scholar

    [21]

    Zanacchi F C, Lavagnino Z, Donnorso M P, Del Bue A, Furia L, Faretta M, Diaspro A 2011 Nat. Methods 8 1047Google Scholar

    [22]

    Liu Z, Lavis L D, Betzig E 2015 Mol. Cell 58 644Google Scholar

    [23]

    Legant W R, Shao L, Grimm J B, Brown T A, Milkie D E, Avants B B, Lavis L D, Betzig E 2016 Nat. Methods 13 359Google Scholar

    [24]

    Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W, Janetopoulos C, Wu X F S, Hammer J A, Liu Z, English B P, Mimori-Kiyosue Y, Romero D P, Ritter A T, Lippincott-Schwartz J, Fritz-Laylin L, Mullins R D, Mitchell D M, Bembenek J N, Reymann A C, Bohme R, Grill S W, Wang J T, Seydoux G, Tulu U S, Kiehart D P, Betzig E 2014 Science 346 439Google Scholar

    [25]

    Zhang W, Li S W, Yang Z G, Yu B, Lin D Y, Xiong J, Qu J L 2020 Biomed. Opt. Express 11 3648Google Scholar

  • 图 1  dLSFM系统光路示意图

    Fig. 1.  Schematic diagram of the dLSFM system.

    图 2  用于厚度和宽度标定的光片侧视图 (a) 通道I单边照明时的光片; (b) 双边照明时的光片; (c) 通道II单边照明时的光片

    Fig. 2.  Side view images of light sheet for thickness and width calibration: (a) Single-sided illumination with the path I; (b) dual-sided illumination; (c) single-sided illumination with path II.

    图 3  用于系统成像分辨率标定的直径100 nm荧光珠图像及其尺寸统计直方图 (a) 未经v-SPI处理的图像; (b) 图(a)中荧光珠沿X方向强度曲线FWHM的直方图分布(N = 25); (c) 经v-SPI处理的图像; (d) 图(c)中相同荧光珠沿X方向强度曲线FWHM的直方图分布; $ \overline{X} $为平均值

    Fig. 3.  Images of 100-nm-diameter fluorescent beads for system resolution calibration: (a) Image without v-SPI processing; (b) the corresponding histogram distribution of the intensity profile FWHM from 25 fluorescent beads in X direction; (c) image with v-SPI processing; (d) the corresponding FWHM histogram distribution from the same beads in X direction; $ \overline{X} $ is the average value.

    图 4  斑马鱼血管结构的大视场成像 (a) 通道I单边照明成像; (b) 双边照明成像; (c) 通道II单边照明成像

    Fig. 4.  Large FOV imaging of vascular structures in a zebrafish: (a) Single-sided illumination imaging with path I; (b) dual-sided illumination imaging; (c) single-sided illumination imaging with path II.

    图 5  斑马鱼运动神经元成像 (a) 未经特殊处理的图像; (b) RL解卷积处理的图像; (c) v-SPI处理图像; (d) 图(a)−(c)中黄色色实线标记位置的归一化强度曲线

    Fig. 5.  Images of motoneurons in a zebrafish: (a) Image without special processing; (b) image with RL deconvolution; (c) image with v-SPI processing; (d) normalized intensity profiles along the yellow solid lines in panels (a)−(c).

    图 6  斑马鱼运动神经元的三维成像 (a)−(c) 不同轴向位置拍摄的图像; (d), (e)三维重建效果图

    Fig. 6.  Three-dimensional imaging of motoneurons in a zebrafish: (a)−(c) Images from different axial positions; (d), (e) three-dimensional reconstruction renderings.

  • [1]

    Power R M, Huisken J 2017 Nat. Methods 14 360Google Scholar

    [2]

    Royer L A, Lemon W C, Chhetri R K, Wan Y N, Coleman M, Myers E W, Keller P J 2016 Nat. Biotechnol. 34 1267Google Scholar

    [3]

    Voie A H, Burns D H, Spelman F A 1993 J. Microsc-Oxford 170 229Google Scholar

    [4]

    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E H K 2004 Science 305 1007Google Scholar

    [5]

    Swoger J, Huisken J, Stelzer E H K 2003 Opt. Lett. 28 1654Google Scholar

    [6]

    Krzic U, Gunther S, Saunders T E, Streichan S J, Hufnagel L 2012 Nat. Methods 9 730Google Scholar

    [7]

    Keller P J, Schmidt A D, Wittbrodt J, Stelzer E H K 2008 Science 322 1065Google Scholar

    [8]

    Truong T V, Supatto W, Koos D S, Choi J M, Fraser S E 2011 Nat. Methods 8 757Google Scholar

    [9]

    Liu S, Nie J, Li Y S, Yu T T, Zhu D, Fei P 2017 J. Innovative Opt. Health. Sci. 10 1743006Google Scholar

    [10]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417Google Scholar

    [11]

    Gao L, Shao L, Chen B C, Betzig E 2014 Nat. Protoc. 9 1083Google Scholar

    [12]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladό C, Ferrier D E K, Čižmár T, Gunn-Moore F J, Dholakia K 2014 Nat. Methods 11 541Google Scholar

    [13]

    Yang Z Y, Prokopas M, Nylk J, Coll-Lladό C, Gunn-Moore F J, Ferrier D E K, Vettenburg T, Dholakia K 2014 Biomed. Opt. Express 5 3434Google Scholar

    [14]

    Jia H, Yu X H, Yang Y L, Zhou X, Yan S H, Liu C, Lei M, Yao B L 2019 J. Biophotonics 12 e201800094Google Scholar

    [15]

    Gao L 2015 Opt. Express 23 6102Google Scholar

    [16]

    Westphal V, Rizzoli S O, Lauterbach M A, Kamin D, Jahn R, Hell S W 2008 Science 320 246Google Scholar

    [17]

    Li D, Shao L, Chen B C, Zhang X, Zhang M S, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P Y, Betzig E 2015 Science 349 aab3500Google Scholar

    [18]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [19]

    Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar

    [20]

    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J 2009 Proc. Natl. Acad. Sci. U. S. A. 106 22287Google Scholar

    [21]

    Zanacchi F C, Lavagnino Z, Donnorso M P, Del Bue A, Furia L, Faretta M, Diaspro A 2011 Nat. Methods 8 1047Google Scholar

    [22]

    Liu Z, Lavis L D, Betzig E 2015 Mol. Cell 58 644Google Scholar

    [23]

    Legant W R, Shao L, Grimm J B, Brown T A, Milkie D E, Avants B B, Lavis L D, Betzig E 2016 Nat. Methods 13 359Google Scholar

    [24]

    Chen B C, Legant W R, Wang K, Shao L, Milkie D E, Davidson M W, Janetopoulos C, Wu X F S, Hammer J A, Liu Z, English B P, Mimori-Kiyosue Y, Romero D P, Ritter A T, Lippincott-Schwartz J, Fritz-Laylin L, Mullins R D, Mitchell D M, Bembenek J N, Reymann A C, Bohme R, Grill S W, Wang J T, Seydoux G, Tulu U S, Kiehart D P, Betzig E 2014 Science 346 439Google Scholar

    [25]

    Zhang W, Li S W, Yang Z G, Yu B, Lin D Y, Xiong J, Qu J L 2020 Biomed. Opt. Express 11 3648Google Scholar

  • [1] 付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮. 基于RCA阵列三维超快超声血流成像方法仿真研究. 物理学报, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [2] 李双双, 赵全堂, 曹树春, 冉朝晖, 申晓康, 赵书俊, 张子民. 高能电子三维成像技术实验研究. 物理学报, 2021, 70(18): 184204. doi: 10.7498/aps.70.20210686
    [3] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, 69(8): 088701. doi: 10.7498/aps.69.20191908
    [4] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [5] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展. 物理学报, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [6] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [7] 李明飞, 阎璐, 杨然, 刘院省. 基于Hadamard矩阵优化排序的快速单像素成像. 物理学报, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [8] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [9] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [10] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究. 物理学报, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [11] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁. 基于Walsh-Hadamard变换的单像素遥感成像. 物理学报, 2016, 65(6): 064201. doi: 10.7498/aps.65.064201
    [12] 王雪花, 陈丹妮, 于斌, 牛憨笨. 基于累积量标准差的超分辨光学涨落成像解卷积优化. 物理学报, 2016, 65(19): 198701. doi: 10.7498/aps.65.198701
    [13] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术. 物理学报, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [14] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [15] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [16] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较. 物理学报, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [17] 刘广东, 张业荣. 乳腺癌检测的三维微波热声成像技术. 物理学报, 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [18] 王琛, 王桂英, 徐至展. 全内反射荧光显微术应用于单分子荧光的纵向成像. 物理学报, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
    [19] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术. 物理学报, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [20] 向际鹰, 吴 震, 曾绍群, 骆清铭, 张 平, 黄德修. 弱相干扫描层析成像系统的三维传递函数分析. 物理学报, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
计量
  • 文章访问数:  2873
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-09-03
  • 上网日期:  2022-01-25
  • 刊出日期:  2022-01-20

/

返回文章
返回