搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层状WS2调制激光泵浦的光学参量振荡中红外运转特性

王静 逄金波 郭鹤泽 胡新宇 周承辰 唐文婧 蒋锴 夏伟

引用本文:
Citation:

基于层状WS2调制激光泵浦的光学参量振荡中红外运转特性

王静, 逄金波, 郭鹤泽, 胡新宇, 周承辰, 唐文婧, 蒋锴, 夏伟

Operation characteristics of mid-infrared optical parametric oscillation pumped by layered WS2 modulated laser

Wang Jing, Pang Jin-Bo, Guo He-Ze, Hu Xin-Yu, Zhou Cheng-Chen, Tang Wen-Jing, Jiang Kai, Xia Wei
PDF
HTML
导出引用
  • 光学参量振荡器是重要的中红外相干光源. 近年来, 在激光调制方面, 二维过渡金属硫化物展现了非线性可饱和吸收特性, 因此有望成为光学参量振荡器基频激光的优良调制元件. 本工作中, 首先, 实验测量了层状二硫化钨(WS2)调制固体激光的输出特性. 其次, 结合主动声光Q开关, 实现了主被动双调Q 光参量振荡的运转, 得到了纳秒脉冲宽度的中红外脉冲, 并研究了WS2对光参量转换的优化特性, 发现WS2纳米片除了能够压缩脉冲、提高峰值功率外, 还能缓解单主动调Q 光学参量振荡器中的“输出饱和下降”现象, 这种现象可能起因于砷酸钛氧钾 (KTiOAsO4, KTA)的制冷不均匀. WS2的可饱和吸收效应能够显著压缩光斑, 减少高斯光斑的边缘能量, 因此能够缓解KTA的温度梯度分布, 从而优化输出特性. 最后, 基于WS2的非线性透过率曲线, 考虑非均匀展宽机制和大信号下的非饱和吸收, 计算了WS2的可饱和吸收特性参数, 并求解了层状WS2调制光学参量振荡器的速率方程组. 本文在实验上展示了二维过渡金属硫化物对激光非线性频率变换的优化效果, 尤其是对热效应的缓解; 同时, 为二维材料调制激光的动力学模拟提供了参数依据.
    Optical parametric oscillator (OPO) is an important mid-infrared coherent light source. Two-dimensional (2D) transition metal dichalcogenide (TMDC) with nonlinear absorption of near-infrared-wavelength light is expected to be a prospective modulating switch for OPO’s fundamental laser. In this work, firstly, the characteristics of a home-made 3.5nm-thick tungsten disulfide (WS2) sample are measured and analyzed. The nonlinear transmission is figured and fitted, revealing the performance of WS2’s saturable absorption. Then, the output characteristics of WS2 saturable absorber (SA) modulated solid-state laser are measured experimentally. Although the photon energy of 1.06 μm-wavelength laser is less than the bandgap energy of 3.5nm WS2, the sample still exhibits the saturable absorption. This may be attributed to the mechanisms of defect-induced absorption, coexistence of states, edge-state of material, two-photon absorption, etc. Secondly, combined with active acousto-optic (AO) modulator, the active and passive Q-switched OPO with idler-light oscillation are implemented, and the nanometer pulse-width mid-infrared pulse is obtained. The implementation of AO modulator is to manage the regular switching time to reduce the pulse peak-to-peak vibration of fundamental light and improve the peak power. The optimal characteristics of WS2 for OPO are studied. Based on the saturable absorption characteristics, the output pulse is compressed by 60%, the peak power is improved by 191%, and the stability of pulse train is improved by 79.62%. Especially, the insertion of WS2 nanosheet could alleviate the “output saturation and drop” phenomenon in singly active-Q-switched OPO. This phenomenon may origin from the uneven refrigeration of KTA. Because the saturable absorption effect of WS2 can significantly reduce the transverse area of Gaussian beam, it can alleviate the temperature gradient distribution of KTA and optimize the output characteristics. Finally, based on the nonlinear transmittance curve measured for WS2, the absorption cross section of ground state and excited state are calculated to be1.732 × 10–17 cm2 and 4.758 × 10–19 cm2, respectively, and the lifetime of excited-state energy level and the initial population density of ground state are evaluated to be 400.6 μs and 1.741 × 1022 cm–3, respectively, by considering the inhomogeneous-broadening mechanism and unsaturated absorption under large signal. The rate equations of layered-WS2 modulated optical parametric oscillator are solved. This study shows the optimization effect of 2D TMDC on nonlinear conversion of laser, especially the mitigation of thermal effect. At the same time, it provides a parameter basis for the dynamic simulation of two-dimensional material modulated laser.
      通信作者: 王静, ss_wangj@ujn.edu.cn ; 逄金波, jinbo.pang@hotmail.com ; 夏伟, sps_xiaw@ujn.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62005049, 51802116, 61308057)、山东省自然科学基金(批准号: ZR2019BEM040)和济南市资助引进创新团队项目基金(批准号: 2018GXRC011)资助的课题
      Corresponding author: Wang Jing, ss_wangj@ujn.edu.cn ; Pang Jin-Bo, jinbo.pang@hotmail.com ; Xia Wei, sps_xiaw@ujn.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62005049, 51802116, 61308057), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019BEM040) and the Jinan Innovation Team Project Fundation, China (Grant No. 2018GXRC011)
    [1]

    Loparo Z E, Ninnemann E, Ru Q, Vodopyanov K L, Vasu S S 2020 Opt. Lett. 45 491Google Scholar

    [2]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [3]

    Ashik A S, O’Donnell C F, Kumar S C, Ebrahim-Zadeh M, Tidemand-Lichtenberg P, Pedersen C 2019 Photonics Res. 7 783Google Scholar

    [4]

    Wang J, Zhao S, Yang K, Li D, Li G, An J 2007 J. Opt. Soc. Am. B 24 2521Google Scholar

    [5]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

    [6]

    Liu F Q, Xia H R, Pan S D 2007 Opt. Lase. Technol. 39 1449Google Scholar

    [7]

    Zhang H, Zhao J, Yang K, Zhao S, Li T, Li G, Zhao B 2014 IEEE J. Sel. Top. Quant. Electronics 21 79

    [8]

    Yang X, Peng Z, Xie W, Li L 2018 Opt. Lase. Technol. 98 19Google Scholar

    [9]

    龙慧, 胡建伟, 吴福根, 董华锋 2020 物理学报 69 188102Google Scholar

    Long H, Hu J W, Wu F G, Dong H F 2020 Acta Phys. Sin. 69 188102Google Scholar

    [10]

    Tian K, Li Y, Yang J 2019 Appl. Phys. B 125 2125

    [11]

    Su X, Zhang B, Wang Y, Guan H E, Guo L I, Lin N A 2018 Photonics Res. 6 498Google Scholar

    [12]

    Du W, Li H P, Lan C, Li C, Liu Y 2020 Opt. Express 28 11514Google Scholar

    [13]

    Ma Y, Sun H, Ran B, Zhang S, Lv Z 2020 Opt. Lase. Technol. 126 106084Google Scholar

    [14]

    Wang Y, Liu S, Wang J, Wang H, Wang T, Wang Y 2020 IEEE Photonic. Tech. L. 32 831Google Scholar

    [15]

    Niu Z, Feng T, Pan Z, Yang K, Gao K 2020 Opt. Mater. Express 10 752Google Scholar

    [16]

    Wang J, Pang J B, Liu S P 2019 Opt. Express 27 36474Google Scholar

    [17]

    Wang J, Pang J, Liu S, Song P, Xia W 2020 Infrared Phys. Techn. 8 103525

    [18]

    Sun Y, Bai Y, Li D 2018 Opt. Express 25 21037

    [19]

    Oshman M, Harris S 1968 IEEE J. Quantum Elect. 5 206

    [20]

    Kim Y S, Kang S, So J P, Kim J C, Lee C H 2021 Sci. Adv. 7 eabd7921Google Scholar

    [21]

    Li M, Sinev I, Benimetskiy F, Ivanova T, Khanikaev A B 2021 Nat. Commun. 12 1Google Scholar

    [22]

    Ling H, Li R, Davoyan A R 2021 ACS Photonics 8 721Google Scholar

    [23]

    Berkdemir A, Gutiérrez R, Humberto, Botello-Méndez R 2013 Sci. Rep. 3 1755Google Scholar

    [24]

    Cong C, Shang J, Wu X, et al. 2014 Adv. Opt. Mater. 2 131Google Scholar

    [25]

    Peimyoo N, Shang J, Cong C, Shen X, Wu X 2013 ACS Nano. 7 10985Google Scholar

    [26]

    Xu K, Wang Z, Du X 2013 Nanotechnology 24 465705Google Scholar

    [27]

    Liu Z, Amani M, Naimaei S 2014 Nat. Commun. 5 5246Google Scholar

    [28]

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z, Lu S, Zhang H, Wen S, Tang D 2013 J. Lightwave Technol. 31 2857Google Scholar

    [29]

    Shimony Y, Burshtein Z, Kalisky Y 1995 IEEE J. Quantum Elect. 30 1738

    [30]

    Zhang S, Dong N, Mcevoy N 2015 Acs Nano 9 7142Google Scholar

    [31]

    Wang S, Yu H, Zhang H, Wang A, Wang J 2014 Adv. Mater. 26 3538Google Scholar

    [32]

    Iliev H, Chuchumishev D, Buchvarov I 2010 Opt. Express 18 5754Google Scholar

    [33]

    Yao J Q, Yu Y Z, Wang P, Wang T, Zhang B G, Ding X, Chen J 2001 Chinese Phys. Lett. 18 1214Google Scholar

    [34]

    Zheng J, Zhao S, Wang Q 2001 Opt. Commun. 199 207Google Scholar

    [35]

    朱雅琛, 兰戈, 李彤, 牛瑞华 2007 激光技术 5 551Google Scholar

    Zhu Y S, Lan G, Li T, Niu R H 2007 Laser Technol. 5 551Google Scholar

    [36]

    卞进田, 孔辉, 徐海萍, 叶庆, 孙晓泉 2021 中国激光 48 249

    Bian J T, Kong H, Xu H P, Ye Q, Sun X Q 2021 Chinese J. of Lasers 48 249

    [37]

    Tang Y, Rae C F, Rahlff C, Dunn M H 1997 J. Opt. Soc. Am. B 14 3442Google Scholar

    [38]

    Coehoorn R, Haas C, Dijkstra J 1987 Phys. Rev. B 35 6195Google Scholar

    [39]

    Zhao S, He D, He J 2018 Nanoscale 10 9536

    [40]

    Xiao G, Bass M, Acharekar M 1998 IEEE J. Quantum Elect. 34 2241Google Scholar

  • 图 1  WS2纳米片的表征 (a) 532 nm激光激发的拉曼光谱; (b) A1g模峰值强度的拉曼映射; (c)光学显微光谱; (d)原子力显微镜成像

    Fig. 1.  Characterization of WS2 nanosheet: (a) Raman spectrum collected with excitation laser of 532 nm wavelength; (b) Raman mapping of peak intensity at A1g mode; (c) optical microscopy; (d) atomic force microscopy.

    图 2  功率扫描法测量WS2纳米片的透过率 (a)实验装置; (b)非线性透过率曲线; (c)低功率密度下的线性拟合

    Fig. 2.  Measurement of nonlinear transmittance for WS2 SA by use of the double optical path method: (a) Experimental setup; (b) nonlinear transmission; (c) linear relation for low-power density.

    图 3  WS2 SA被动调Q的1.06 μm激光 (a)实验装置; (b)平均输出功率; (c)脉冲宽度; (d)脉冲重复率; (e)峰值功率; (f) WS2Q、1.06 μm脉冲波形; (g) WS2+AO调Q的1.06 μm脉冲波形, fp = 15 kHz

    Fig. 3.  WS2 SA passively Q-switched 1.06 μm laser: (a) Experimental setup; (b) average output power; (c) pulse width; (d) pulse repetition rate; (e) peak power; (f) temporal pulse train from WS2 Q-switched 1.06μm laser; (g) temporal pulse train from WS2+AO Q-switched 1.06 μm laser, fp = 15 kHz.

    图 4  少层 WS2+AO调制KTA IOPO的实验装置图

    Fig. 4.  Few-layer WS2+AO modulated KTA IOPO.

    图 5  基频光(a)、信号光(b)和闲频光(c)的光谱

    Fig. 5.  The spectra of the fundamental (a), signal (b), and idler (c) light.

    图 6  Q IOPO的中红外闲频光输出特性 (a), (e)平均输出功率; (b), (f)输出脉冲宽度; (c), (g)峰值功率; (d), (h)输出脉冲序列. (a)—(d) AO单调Q IOPO的输出结果; (e)—(h)WS2 SA+AO 双调Q IOPO的输出结果

    Fig. 6.  Output characteristics of Q-switched IOPOs: (a), (e) Average output power; (b), (f) pulse width; (c), (g) peak power; (d), (h) pulse train; (a)–(d) output of AO Q-switched IOPO; (e)–(h) output of WS2 SA+AO Q-switched IOPO.

    图 7  (a)走离角、有效非线性系数与相位匹配角θ的关系; (b) AO单调Q的 1.06 μm基频光的光斑, 高斯光束质量因子 ${M}_{x}^{2} = $$ 3.02,\; {M}_{y}^{2} = 2.19$, 光束半径为798 μm; (c) WS2+AO双调Q的 1.06 μm基频光的光斑, 高斯光束质量因子${M}_{x}^{2} = 1.69,\; {M}_{y}^{2} = $$ 1.51$, 光束半径为451 μm

    Fig. 7.  (a) Walk-off angle and deff versus θ; (b) 1.06 μm fundamental-light beam from AO Q-switched laser, ${M}_{x}^{2} = 3.02, $$ {M}_{y}^{2} = 2.19$, beam radius of 798 μm; (c) 1.06 μm fundamental-light beam from WS2+AO Q-switched laser, ${M}_{x}^{2} = 1.69, $$ {M}_{y}^{2} = 1.51,$ beam radius of 451 μm.

    图 8  Ppump = 11.2 W, fp = 15 kHz时, 基频光、闲频光、信号光的时域波形 (a) WS2+AO调Q IOPO的基频光波形; (b) WS2+AO调Q IOPO的闲频光波形; (c) WS2+AO调Q IOPO的信号光波形; (d) AO调Q IOPO的基频光波形; (e) AO调Q IOPO的闲频光波形; (f) AO调Q IOPO的信号光波形

    Fig. 8.  Temporal pulses of fundamental light, idler light, and signal light at Ppump = 11.2 W, fp = 15 kHz: (a) Fundamental pulse from WS2+AO Q-switched IOPO; (b) idler pulse from WS2+AO Q-switched IOPO; (c) signal pulse from WS2+AO Q-switched IOPO; (d) fundamental pulse from AO Q-switched IOPO; (e) idler pulse from AO Q-switched IOPO; (f) signal pulse from AO Q-switched IOPO.

    表 1  实验制备3.5 nm WS2 SA可饱和吸收特性的关键参数

    Table 1.  The key parameters for saturable absorption properties of 2D-WS2 SA.

    ParametersValues
    σg/cm21.732 × 10–17
    σe/cm24.758 × 10–19
    τy/μs400.6
    ly/nm3.5
    ny0/cm–31.741 × 1022
    下载: 导出CSV

    表 2  速率方程中的其它参数

    Table 2.  The other parameters in rate equations.

    ParametersMeaningValues
    σ/cm2Nd:YVO4的受激发射截面1.3 × 10–18
    tAO/ns声光的开关时间14
    τ/μsNd:YVO4的受激发射寿命95
    deff/(pm·V–1)KTA的有效非线性系数4.47
    n11064 nm激光在 Nd:YVO4
    中的折射率
    2.183
    n21064 nm激光在 AO中的折射率1.600
    np1064 nm激光在 KTA中的折射率1.868
    ns1536 nm激光在 KTA中的折射率1.854
    ni3467 nm激光在 KTA中的折射率1.817
    下载: 导出CSV
  • [1]

    Loparo Z E, Ninnemann E, Ru Q, Vodopyanov K L, Vasu S S 2020 Opt. Lett. 45 491Google Scholar

    [2]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [3]

    Ashik A S, O’Donnell C F, Kumar S C, Ebrahim-Zadeh M, Tidemand-Lichtenberg P, Pedersen C 2019 Photonics Res. 7 783Google Scholar

    [4]

    Wang J, Zhao S, Yang K, Li D, Li G, An J 2007 J. Opt. Soc. Am. B 24 2521Google Scholar

    [5]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

    [6]

    Liu F Q, Xia H R, Pan S D 2007 Opt. Lase. Technol. 39 1449Google Scholar

    [7]

    Zhang H, Zhao J, Yang K, Zhao S, Li T, Li G, Zhao B 2014 IEEE J. Sel. Top. Quant. Electronics 21 79

    [8]

    Yang X, Peng Z, Xie W, Li L 2018 Opt. Lase. Technol. 98 19Google Scholar

    [9]

    龙慧, 胡建伟, 吴福根, 董华锋 2020 物理学报 69 188102Google Scholar

    Long H, Hu J W, Wu F G, Dong H F 2020 Acta Phys. Sin. 69 188102Google Scholar

    [10]

    Tian K, Li Y, Yang J 2019 Appl. Phys. B 125 2125

    [11]

    Su X, Zhang B, Wang Y, Guan H E, Guo L I, Lin N A 2018 Photonics Res. 6 498Google Scholar

    [12]

    Du W, Li H P, Lan C, Li C, Liu Y 2020 Opt. Express 28 11514Google Scholar

    [13]

    Ma Y, Sun H, Ran B, Zhang S, Lv Z 2020 Opt. Lase. Technol. 126 106084Google Scholar

    [14]

    Wang Y, Liu S, Wang J, Wang H, Wang T, Wang Y 2020 IEEE Photonic. Tech. L. 32 831Google Scholar

    [15]

    Niu Z, Feng T, Pan Z, Yang K, Gao K 2020 Opt. Mater. Express 10 752Google Scholar

    [16]

    Wang J, Pang J B, Liu S P 2019 Opt. Express 27 36474Google Scholar

    [17]

    Wang J, Pang J, Liu S, Song P, Xia W 2020 Infrared Phys. Techn. 8 103525

    [18]

    Sun Y, Bai Y, Li D 2018 Opt. Express 25 21037

    [19]

    Oshman M, Harris S 1968 IEEE J. Quantum Elect. 5 206

    [20]

    Kim Y S, Kang S, So J P, Kim J C, Lee C H 2021 Sci. Adv. 7 eabd7921Google Scholar

    [21]

    Li M, Sinev I, Benimetskiy F, Ivanova T, Khanikaev A B 2021 Nat. Commun. 12 1Google Scholar

    [22]

    Ling H, Li R, Davoyan A R 2021 ACS Photonics 8 721Google Scholar

    [23]

    Berkdemir A, Gutiérrez R, Humberto, Botello-Méndez R 2013 Sci. Rep. 3 1755Google Scholar

    [24]

    Cong C, Shang J, Wu X, et al. 2014 Adv. Opt. Mater. 2 131Google Scholar

    [25]

    Peimyoo N, Shang J, Cong C, Shen X, Wu X 2013 ACS Nano. 7 10985Google Scholar

    [26]

    Xu K, Wang Z, Du X 2013 Nanotechnology 24 465705Google Scholar

    [27]

    Liu Z, Amani M, Naimaei S 2014 Nat. Commun. 5 5246Google Scholar

    [28]

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z, Lu S, Zhang H, Wen S, Tang D 2013 J. Lightwave Technol. 31 2857Google Scholar

    [29]

    Shimony Y, Burshtein Z, Kalisky Y 1995 IEEE J. Quantum Elect. 30 1738

    [30]

    Zhang S, Dong N, Mcevoy N 2015 Acs Nano 9 7142Google Scholar

    [31]

    Wang S, Yu H, Zhang H, Wang A, Wang J 2014 Adv. Mater. 26 3538Google Scholar

    [32]

    Iliev H, Chuchumishev D, Buchvarov I 2010 Opt. Express 18 5754Google Scholar

    [33]

    Yao J Q, Yu Y Z, Wang P, Wang T, Zhang B G, Ding X, Chen J 2001 Chinese Phys. Lett. 18 1214Google Scholar

    [34]

    Zheng J, Zhao S, Wang Q 2001 Opt. Commun. 199 207Google Scholar

    [35]

    朱雅琛, 兰戈, 李彤, 牛瑞华 2007 激光技术 5 551Google Scholar

    Zhu Y S, Lan G, Li T, Niu R H 2007 Laser Technol. 5 551Google Scholar

    [36]

    卞进田, 孔辉, 徐海萍, 叶庆, 孙晓泉 2021 中国激光 48 249

    Bian J T, Kong H, Xu H P, Ye Q, Sun X Q 2021 Chinese J. of Lasers 48 249

    [37]

    Tang Y, Rae C F, Rahlff C, Dunn M H 1997 J. Opt. Soc. Am. B 14 3442Google Scholar

    [38]

    Coehoorn R, Haas C, Dijkstra J 1987 Phys. Rev. B 35 6195Google Scholar

    [39]

    Zhao S, He D, He J 2018 Nanoscale 10 9536

    [40]

    Xiao G, Bass M, Acharekar M 1998 IEEE J. Quantum Elect. 34 2241Google Scholar

  • [1] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [2] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [3] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强. 物理学报, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [4] 王静, 逄金波, 郭鹤泽, 胡新宇, 周承辰, 唐文婧, 蒋锴, 夏伟. 基于层状WS2调制激光泵浦的光学参量振荡中红外运转特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211409
    [5] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [6] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [7] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [8] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [9] 高辉, 宋凌莉, 李兵. 墙壁反射中子对脉冲堆波形的影响. 物理学报, 2018, 67(17): 172801. doi: 10.7498/aps.67.20180085
    [10] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [12] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [13] 方少寅, 陆海铭, 赖天树. 自旋极化度对GaAs量子阱中吸收饱和效应与载流子复合动力学的影响研究. 物理学报, 2015, 64(15): 157201. doi: 10.7498/aps.64.157201
    [14] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [15] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [16] 葛伟宽. 一类动力学方程的Mei对称性. 物理学报, 2007, 56(1): 1-4. doi: 10.7498/aps.56.1
    [17] 董全林, 王 坤, 张春熹, 刘 彬. 圆柱体相对转动动力学方程的积分解. 物理学报, 2004, 53(2): 337-342. doi: 10.7498/aps.53.337
    [18] 化存才, 陆启韶. 吸收型光学双稳态方程的时变分岔与动力学行为. 物理学报, 2000, 49(4): 733-740. doi: 10.7498/aps.49.733
    [19] 欧发, 蔡永强. 普适性的光学双稳及激光动力学方程和稳定性分析. 物理学报, 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [20] 夏蒙棼, 胡慧玲. 随机磁场中的动力学方程. 物理学报, 1980, 29(10): 1254-1262. doi: 10.7498/aps.29.1254
计量
  • 文章访问数:  4025
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-08-30
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回