搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双电子传输层结构硫硒化锑太阳电池的界面特性优化

曹宇 刘超颖 赵耀 那艳玲 江崇旭 王长刚 周静 于皓

引用本文:
Citation:

双电子传输层结构硫硒化锑太阳电池的界面特性优化

曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓

Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure

Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao
PDF
HTML
导出引用
  • 硫硒化锑薄膜太阳电池因其制备方法简单、原材料丰富无毒、光电性质稳定等优点, 成为了光伏领域的研究热点. 经过近几年的发展, 硫硒化锑太阳电池的光电转换效率已经突破10%, 极具发展潜力. 本文针对硫硒化锑太阳电池中n/i界面引起的载流子复合进行了深入研究. 发现硫硒化锑太阳电池的界面特性会受到界面电子迁移能力和能带结构两方面的影响. 界面电子迁移率的提高能使电子更有效地传输至电子传输层, 实现器件短路电流密度和填充因子的有效提升. 在此基础上, 引入ZnO/Zn1–xMgxO双电子传输层结构能够进一步优化硫硒化锑太阳电池性能. 其中, Zn1–xMgxO能级位置的改变可以同时调节界面和吸光层的能级分布, 在Zn1–xMgxO导带能级为–4.2 eV, 对应Mg含量为20%时, 抑制载流子复合的效果最为明显, 硫硒化锑太阳电池也获得了最佳的器件性能. 在去除缺陷态的理想情况下, 双电子传输层结构硫硒化锑太阳电池在600 nm厚时获得了20.77%的理论光电转换效率, 该研究结果为硫硒化锑太阳电池的进一步优化和发展提供了理论与技术支持.
    Antimony sulfide selenide thin film solar cells have drawn great interest in the field of photovoltaic due to their advantages of simple preparation method, abundant raw materials, non-toxic and stable photoelectric properties. After the development in recent years, the photoelectric conversion efficiency of antimony sulfide selenide solar cells has exceeded 10%, which has great development potential. In this work, the carrier recombination near n/i interface in antimony sulfide selenide solar cells is studied. It is found that the characteristics of the n/i interface are affected by the interfacial electron mobility and energy band structure. The improvement of the interface electron mobility can make the electrons more effectively transferred to the electron transport layer, and realize the effective improvement of the short circuit current density and fill factor of the device. Moreover, the introduction of ZnO/Zn1–xMgxO double electron transport layer structure can further optimize the performance of antimony sulfide selenide solar cells. The change of Zn1–xMgxO energy level position can adjust the energy level distribution of the interface and light absorption layer simultaneously. When the conduction band energy level of Zn1–xMgxO is –4.2 eV and the corresponding Mg content is 20%, the effect of restraining the carrier recombination is the most obvious, and the antimony sulfide selenide solar cell also obtains the best device performance. Finally, under the ideal condition of removing the defect state, the antimony sulfide selenide solar cells with 600 nm in thickness can achieve 20.77% theoretical photoelectric conversion efficiency. The research results provide theoretical and technical support for further optimizing and developing the antimony sulfide selenide solar cells.
      通信作者: 王长刚, wangcg@neepu.edu.cn ; 于皓, 20182828@neepu.edu.cn
    • 基金项目: 城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金 (批准号: 2021HJ05)和国家自然科学基金 (批准号: 51772049) 资助的课题.
      Corresponding author: Wang Chang-Gang, wangcg@neepu.edu.cn ; Yu Hao, 20182828@neepu.edu.cn
    • Funds: Project supported by the Open Project Fund of National Engineering Laboratory for Digital Construction and Evaluation of Urban Rail Transit (Grant No. 2021HJ05) and the National Natural Science Foundation of China (Grant No. 51772049).
    [1]

    Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1

    [2]

    Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837Google Scholar

    [3]

    曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802Google Scholar

    Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802Google Scholar

    [4]

    Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002Google Scholar

    [5]

    Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121Google Scholar

    [6]

    Li D B, Bista S S, Song Z N, Awni R A, Subedi K K, Shrestha N, Pradhan P, Chen L, Bastola E, Grice C R, Phillips A B, Heben M J, Ellingson R J, Yan Y F 2020 Nano Energy 73 104835Google Scholar

    [7]

    Wang Y R, Gu S, Liu G L, Zhang L P, Liu Z, Lin R X, Xiao K, Luo X, Shi J H, Du J L, Meng F Y, Li L D, Liu Z X, Tan H R 2021 Sci. China Chem. 64 1

    [8]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [9]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [10]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [11]

    Li K H, Li F, Chen C, Jiang P F, Lu S C, Wang S Y, Lu Y, Tu G L, Guo J J, Shui L Q, Liu Z, Song B X, Tang J 2021 Nano Energy 86 106101Google Scholar

    [12]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 1Google Scholar

    [13]

    Lee S J, Sung S J, Yang K J, Kang J K, Kim J Y, Do Y S, Kim D H 2020 ACS Appl. Energy Mater. 3 12644Google Scholar

    [14]

    Luo J T, Xiong W, Liang G X, Liu Y K, Yang H Z, Zheng Z H, Zhang X H, Fan P, Chen S 2020 J. Alloys Compd. 826 154235Google Scholar

    [15]

    Xiao Y P, Wang H P, Kuang H 2020 Opt. Mater. 108 110414Google Scholar

    [16]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [17]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp R E I, Mai Y H 2019 Nat. Commun. 10 1Google Scholar

    [18]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [19]

    Ning H, Guo H F, Zhang J Y, Wang X, Jia X G, Qiu J H, Yuan N Y, Ding J N 2021 Sol. Energy Mater. Sol. Cells 221 110816Google Scholar

    [20]

    Cai Z H, Dai C M, Chen S Y 2020 Sol. RRL 4 1900503Google Scholar

    [21]

    Ishaq M, Chen S, Farooq U, Azam M, Deng H, Su Z H, Zheng Z H, Fan P, Song H S, Liang G X 2020 Sol. RRL 4 2000551Google Scholar

    [22]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Sol. RRL 3 1900026Google Scholar

    [23]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou J W, Liu H, Cuniberti G 2021 Sol. RRL 5 2000800Google Scholar

    [24]

    Yang B, Qin S K, Xue D J, Chen C, He YS, Niu D M, Huang H, Tang J 2017 Prog. Photovolt:Res. Appl. 25 113Google Scholar

    [25]

    Wu C Y, Zhang L J, Ding H H, Ju H X, Jin X, Wang X M, Zhu C F, Chen T 2018 Sol. Energy Mater. Sol. Cells 183 52Google Scholar

    [26]

    Lu S C, Zhao Y, Wen X X, Xue D J, Chen C, Li K H, Kondrotas R, Wang C, Tang J 2019 Sol. RRL 3 1800280Google Scholar

    [27]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy. 5 587Google Scholar

    [28]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Sol. RRL 4 2000220Google Scholar

    [29]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [30]

    Weng T F, Yan M, Yu X, Qiao Q, Zhou Y T, Li Z H, Wei J, Yu X M 2021 Opt. Mater. 121 111516Google Scholar

    [31]

    Wang W H, Wang X M, Chen G L, Chen B W, Cai H L, Chen T, Chen S Y, Huang Z G, Zhu C F, Zhang Y 2018 Sol. RRL 2 1800208Google Scholar

    [32]

    Ishaq M, Deng H, Yuan S J, Zhang H, Khan J, Farooq U, Song H S, Tang J 2018 Sol. RRL 2 1800144Google Scholar

    [33]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [34]

    Li K H, Kondrotas R, Chen C, Lu S C, Wen X X, Li D B, Luo J J, Zhao Y, Tang J 2018 Sol. Energy 167 10Google Scholar

    [35]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [36]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

  • 图 1  Sb2(S0.7Se0.3)3太阳电池的结构示意图

    Fig. 1.  Schematic diagram of the Sb2(S0.7Se0.3)3 solar cell structure.

    图 2  不同n/i界面电子迁移率硫硒化锑太阳电池的器件性能 (a)开路电压; (b) 短路电流密度; (c) 填充因子; (d)转换效率

    Fig. 2.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with different electron mobilities at n/i interface: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 3  不同n/i界面电子迁移率硫硒化锑太阳电池的器件特性 (a) 电子浓度分布; (b) 载流子复合率分布

    Fig. 3.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with different electron mobilities at n/i interface: (a) Electron density distribution; (b) carrier recombination rate distribution.

    图 4  不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的器件性能 (a) J-V曲线; (b) 能带图; (c) 电子浓度分布; (d) 载流子复合率分布

    Fig. 4.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer: (a) J-V curves; (b) energy band diagram; (c) electron density distribution; (d) carrier recombination rate distribution.

    图 5  (a) 不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的PCE; (b) 单电子传输层与双电子传输层硫硒化锑太阳电池的性能对比

    Fig. 5.  (a) PCE of the Sb2(S0.7Se0.3)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer; (b) PCE comparison of Sb2(S0.7Se0.3)3 solar cells with single and double electron transport layers.

    图 6  ZnO/Zn0.8Mg0.2O双电子传输层硫硒化锑太阳电池能级示意图

    Fig. 6.  Energy levels diagram of the Sb2(S0.7Se0.3)3 solar cell with ZnO/Zn0.8Mg0.2O electron transport layer.

    图 7  ZnO/Zn0.8Mg0.2O双电子传输层硫硒化锑太阳电池的器件性能 (a) J-V曲线; (b) 量子效率图

    Fig. 7.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with ZnO/Zn0.8Mg0.2O double electron transport layers: (a) J-V curve; (b) quantum efficiency spectrum.

    表 1  不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的器件性能参数

    Table 1.  Device performance of Sb2(S1–xSex)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer.

    导带能级/eVVoc/VJsc/(mA·cm–2)FF/%PCE/%
    –4.01.0817.2760.4411.23
    –4.21.0817.7361.2811.70
    –4.41.0817.4258.1010.90
    –4.61.0716.9454.399.83
    下载: 导出CSV
  • [1]

    Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1

    [2]

    Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837Google Scholar

    [3]

    曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802Google Scholar

    Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802Google Scholar

    [4]

    Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002Google Scholar

    [5]

    Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121Google Scholar

    [6]

    Li D B, Bista S S, Song Z N, Awni R A, Subedi K K, Shrestha N, Pradhan P, Chen L, Bastola E, Grice C R, Phillips A B, Heben M J, Ellingson R J, Yan Y F 2020 Nano Energy 73 104835Google Scholar

    [7]

    Wang Y R, Gu S, Liu G L, Zhang L P, Liu Z, Lin R X, Xiao K, Luo X, Shi J H, Du J L, Meng F Y, Li L D, Liu Z X, Tan H R 2021 Sci. China Chem. 64 1

    [8]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [9]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [10]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [11]

    Li K H, Li F, Chen C, Jiang P F, Lu S C, Wang S Y, Lu Y, Tu G L, Guo J J, Shui L Q, Liu Z, Song B X, Tang J 2021 Nano Energy 86 106101Google Scholar

    [12]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 1Google Scholar

    [13]

    Lee S J, Sung S J, Yang K J, Kang J K, Kim J Y, Do Y S, Kim D H 2020 ACS Appl. Energy Mater. 3 12644Google Scholar

    [14]

    Luo J T, Xiong W, Liang G X, Liu Y K, Yang H Z, Zheng Z H, Zhang X H, Fan P, Chen S 2020 J. Alloys Compd. 826 154235Google Scholar

    [15]

    Xiao Y P, Wang H P, Kuang H 2020 Opt. Mater. 108 110414Google Scholar

    [16]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [17]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp R E I, Mai Y H 2019 Nat. Commun. 10 1Google Scholar

    [18]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [19]

    Ning H, Guo H F, Zhang J Y, Wang X, Jia X G, Qiu J H, Yuan N Y, Ding J N 2021 Sol. Energy Mater. Sol. Cells 221 110816Google Scholar

    [20]

    Cai Z H, Dai C M, Chen S Y 2020 Sol. RRL 4 1900503Google Scholar

    [21]

    Ishaq M, Chen S, Farooq U, Azam M, Deng H, Su Z H, Zheng Z H, Fan P, Song H S, Liang G X 2020 Sol. RRL 4 2000551Google Scholar

    [22]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Sol. RRL 3 1900026Google Scholar

    [23]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou J W, Liu H, Cuniberti G 2021 Sol. RRL 5 2000800Google Scholar

    [24]

    Yang B, Qin S K, Xue D J, Chen C, He YS, Niu D M, Huang H, Tang J 2017 Prog. Photovolt:Res. Appl. 25 113Google Scholar

    [25]

    Wu C Y, Zhang L J, Ding H H, Ju H X, Jin X, Wang X M, Zhu C F, Chen T 2018 Sol. Energy Mater. Sol. Cells 183 52Google Scholar

    [26]

    Lu S C, Zhao Y, Wen X X, Xue D J, Chen C, Li K H, Kondrotas R, Wang C, Tang J 2019 Sol. RRL 3 1800280Google Scholar

    [27]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy. 5 587Google Scholar

    [28]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Sol. RRL 4 2000220Google Scholar

    [29]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [30]

    Weng T F, Yan M, Yu X, Qiao Q, Zhou Y T, Li Z H, Wei J, Yu X M 2021 Opt. Mater. 121 111516Google Scholar

    [31]

    Wang W H, Wang X M, Chen G L, Chen B W, Cai H L, Chen T, Chen S Y, Huang Z G, Zhu C F, Zhang Y 2018 Sol. RRL 2 1800208Google Scholar

    [32]

    Ishaq M, Deng H, Yuan S J, Zhang H, Khan J, Farooq U, Song H S, Tang J 2018 Sol. RRL 2 1800144Google Scholar

    [33]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [34]

    Li K H, Kondrotas R, Chen C, Lu S C, Wen X X, Li D B, Luo J J, Zhao Y, Tang J 2018 Sol. Energy 167 10Google Scholar

    [35]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [36]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

  • [1] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [2] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟. 物理学报, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [3] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211525
    [4] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [5] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [6] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [7] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [8] 孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔. 更正:连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[物理学报2014, 63, 018801]. 物理学报, 2014, 63(2): 029901. doi: 10.7498/aps.63.029901
    [9] 孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔. 连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池. 物理学报, 2014, 63(1): 018801. doi: 10.7498/aps.63.018801
    [10] 徐炜炜, 胡林华, 罗向东, 刘培生, 戴松元. 基于薄膜电极溶胶修饰的染料敏化太阳电池光电特性研究. 物理学报, 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [11] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [12] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [13] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [14] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [15] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [16] 刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究. 物理学报, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [17] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [18] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [19] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [20] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
计量
  • 文章访问数:  5553
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-09-14
  • 上网日期:  2022-01-20
  • 刊出日期:  2022-02-05

/

返回文章
返回