-
氧化镓作为新一代宽禁带材料, 其器件具有优越的性能. 本文仿真研究了n+高浓度外延薄层对氧化镓肖特基二极管的势垒调控. 模拟结果显示, 当n型氧化镓外延厚度为5 nm、掺杂浓度为2.6×1018 cm–3时, 肖特基二极管纵向电流密度高达496.88 A/cm2、反向击穿电压为182.30 V、导通电阻为0.27 mΩ·cm2, 品质因子可达123.09 MW/cm2. 进一步研究发现肖特基二极管的性能与n+外延层厚度和浓度有关, 其电流密度随n+外延层的厚度和浓度的增大而增大. 分析表明, n+外延层对势垒的调控在于镜像力、串联电阻及隧穿效应综合影响, 其中镜像力和串联电阻对势垒的降低作用较小, 而高电场下隧穿效应变得十分显著, 使得热发射电流增大的同时, 隧穿电流得到大幅度提升, 从而进一步提升了氧化镓肖特基二极管的性能.Gallium oxide is a new generation of wide band gap materials, and its device has excellent performance. The barrier control of Ga2O3 Schottky diode by n+ high concentration epitaxial thin layer is studied. The results show that the performance of Schottky diode has greatly improved after epitaxy of n-type gallium oxide. The vertical current density is 496.88A·cm–2, the reverse breakdown voltage is 182.30 V, and the calculated Ron is 0.27 mΩ·cm2 when the epitaxial concentration is 2.6 × 1018 cm–3 and the thickness is 5 nm. Further studies indicate that the current density increases with the increase of the layer thickness and the concentration. Theoretical analysis shows that the barrier is controlled by mirror force, series resistance and tunnel effect. Of them, the tunnel effect has the greatest influence, which makes the barrier height decrease with the layer concentration as
$\sqrt {{n}}$ and the thickness as$\sqrt {{a}}$ . As a result, the hot emission current and the tunnel current increase simultaneously, which improves the performance of Ga2O3 Schottky diode.-
Keywords:
- gallium oxide /
- schottky diode /
- effective barrier /
- tunnel current
[1] Singh M, Casbon M A, Uren M J, et al. 2018 IEEE Electron Device Lett. 10 1572Google Scholar
[2] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Spinger Press)
[3] Sasaki K, Kuramata A, Masui T, Víllora E G, Shimamura K, Yamakoshi S 2012 Appl. Phys. Express 5 035502Google Scholar
[4] Oh S, Yang G, Kim J 2017 ECS J. Solid State Sci. 6 Q3022Google Scholar
[5] Konishi K, Goto K, Murakami H, et al. 2017 Appl. Phys. Lett. 110 103506Google Scholar
[6] Yang J, Ahn S, Ren F, Pearton S J, Kuramata A 2017 Appl. Phys. Lett. 110 030101Google Scholar
[7] Hu Z, Hong Z, Dang K, Cai Y, Yue H 2018 IEEE J. Electron Devi. 6 1Google Scholar
[8] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar
[9] Splith D, Müller S, Schmidt F, et al. 2014 Phys. Status Solidi A 211 40Google Scholar
[10] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar
[11] Hlzl J, Schulte F K 1979 Springer Tr. Mod. Phys. 85 1Google Scholar
[12] Irmscher K, Galazka Z, Pietsch M, Uecker R, Fornari R 2011 J. Appl. Phys. 110 A316Google Scholar
[13] Mohamed M, Janowitz C, Unger I, et al. 2010 Appl. Phys. Lett. 97 081906Google Scholar
[14] Rubio A, Corkill J L, Cohen M L, Shirley E L, Louie S G 1993 Phys. Rev. B 48 11810Google Scholar
[15] He H, Blanco M A, Pandey R 2006 Appl. Phys. Lett. 88 261904Google Scholar
[16] Cheng T, Jie S, Na L, Jia Z, Mu W, Tao X, Xian Z 2016 Rsc Adv. 6 78322Google Scholar
[17] 汤晓燕, 张义门, 张玉明, 郭辉, 张林 2006 半导体学报 27 174Google Scholar
Tang X Y, Zhang Y M, Zhang Y M, Guo H, Zhang L 2006 J. Semicond. 27 174Google Scholar
[18] Chabak K D, Moser N, Green A J, Walker D E, Jessen. G 2018 Appl. Phys. Lett. 109 213501Google Scholar
-
图 3 考虑隧穿效应, 在2.6 × 1018 cm–3浓度下, n+层厚度对正向特性的影响 (a)正向I-V曲线; (b) 0.8 V正向偏置时, 电流密度与n+层厚度的关系; (c)导通电阻与n+层厚度的关系; (d)有效势垒高度和理想因子与n+层厚度的关系
Fig. 3. Considering the tunnel effect, influence of n+ layer thickness on forward characteristic with concentration 2.6 × 1018 cm–3: (a) Forward I-V curve; (b) relationship between current density and the thickness at 0.8 V forward bias; (c) relationship between Ron and the thickness; (d) relationship of effective barrier height and ideal factor to the thickness.
图 4 考虑隧穿效应, 在厚度为5 nm时, n+层浓度对正向特性的影响 (a)正向I-V曲线; (b) 0.8 V正向偏置时, 电流密度与n+层浓度的关系; (c)导通电阻与n+层浓度的关系; (d)有效势垒高度和理想因子与n+层浓度的关系
Fig. 4. Considering the tunnel effect, the influence of n+ layer concentration on the forward characteristic with 5 nm thickness: (a) Forward I-V curves; (b) relationship between current density and the concentration at 0.8 V forward bias; (c) relationship between Ron and the concentration; (d) relationship of effective barrier height and ideal factor to the concentration.
表 1 按照热电子发射理论计算的参数
Table 1. Parameters calculated according to hot electron emission theory
势垒高度/eV 理想因子n 开启电压/V Ron/
(mΩ·cm2)0.8 V电流密度/(A·cm–2) 击穿电压/V 类型 1.08 1.06 0.76 88.50 2.34 — I: 无外延层+无隧穿效应 1.07 1.10 0.75 31.10 3.62 187.61 II: 无外延层+有隧穿效应 1.02 1.02 0.76 18.25 14.05 — III: 有外延层+无隧穿效应 0.93 1.07 0.76 0.27 496.88 182.30 IV: 有外延层+有隧穿效应 -
[1] Singh M, Casbon M A, Uren M J, et al. 2018 IEEE Electron Device Lett. 10 1572Google Scholar
[2] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Spinger Press)
[3] Sasaki K, Kuramata A, Masui T, Víllora E G, Shimamura K, Yamakoshi S 2012 Appl. Phys. Express 5 035502Google Scholar
[4] Oh S, Yang G, Kim J 2017 ECS J. Solid State Sci. 6 Q3022Google Scholar
[5] Konishi K, Goto K, Murakami H, et al. 2017 Appl. Phys. Lett. 110 103506Google Scholar
[6] Yang J, Ahn S, Ren F, Pearton S J, Kuramata A 2017 Appl. Phys. Lett. 110 030101Google Scholar
[7] Hu Z, Hong Z, Dang K, Cai Y, Yue H 2018 IEEE J. Electron Devi. 6 1Google Scholar
[8] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R, Fornari R 2012 Appl. Phys. Lett. 101 132106Google Scholar
[9] Splith D, Müller S, Schmidt F, et al. 2014 Phys. Status Solidi A 211 40Google Scholar
[10] He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar
[11] Hlzl J, Schulte F K 1979 Springer Tr. Mod. Phys. 85 1Google Scholar
[12] Irmscher K, Galazka Z, Pietsch M, Uecker R, Fornari R 2011 J. Appl. Phys. 110 A316Google Scholar
[13] Mohamed M, Janowitz C, Unger I, et al. 2010 Appl. Phys. Lett. 97 081906Google Scholar
[14] Rubio A, Corkill J L, Cohen M L, Shirley E L, Louie S G 1993 Phys. Rev. B 48 11810Google Scholar
[15] He H, Blanco M A, Pandey R 2006 Appl. Phys. Lett. 88 261904Google Scholar
[16] Cheng T, Jie S, Na L, Jia Z, Mu W, Tao X, Xian Z 2016 Rsc Adv. 6 78322Google Scholar
[17] 汤晓燕, 张义门, 张玉明, 郭辉, 张林 2006 半导体学报 27 174Google Scholar
Tang X Y, Zhang Y M, Zhang Y M, Guo H, Zhang L 2006 J. Semicond. 27 174Google Scholar
[18] Chabak K D, Moser N, Green A J, Walker D E, Jessen. G 2018 Appl. Phys. Lett. 109 213501Google Scholar
计量
- 文章访问数: 5822
- PDF下载量: 215
- 被引次数: 0