-
设计了一种基于双芯负曲率光纤的新型低损耗大带宽太赫兹偏振分束器, 该器件以环烯烃共聚物为基底, 沿圆周等间距分布着12个含内嵌管的圆形管, 通过上下对称的两组外切小包层管将纤芯分成双芯. 采用时域有限差分法对其导模特性进行分析, 详细研究了各个参数对其偏振分束特性的影响, 分析了该偏振分束器的消光比、带宽、传输损耗等性能. 仿真结果表明: 当入射光频率为1 THz, 分束器长度为6.224 cm时, x偏振光的消光比达到120.8 dB, 带宽为0.024 THz, y偏振光的消光比达到63.74 dB, 带宽为0.02 THz, 传输总损耗低至0.037 dB/cm. 公差分析表明结构参数在±1%的偏差下, 偏振分束器仍然可以保持较好的性能.A novel terahertz polarization beam splitter (PBS) with low loss and large bandwidth based on double core negative curvature fiber is designed. The device takes copolymers of cycloolefin as the substrate, and 12 circular tubes with embedded tubes are evenly distributed along the circumference. The fiber core is divided into two cores through two groups of circumscribed small clad tubes symmetrical up and down. The finite-difference time-domain (FDTD) method is used to analyze its guide mode properties. The effects of various structural parameters on its beam splitting characteristics are investigated in detail, and the extinction ratio (ER), bandwidth and transmission loss of the PBS are analyzed. The simulation results show that when the incident light frequency is 1THz and the beam splitter length is 6.224 cm, the ER of x-polarized light reaches 120.8 dB, the bandwidth with ER above 20 dB is 0.024 THz, the ER of y-polarized light reaches 63.74 dB, the bandwidth with ER above 20 dB is 0.02THz, and the total transmission loss is as low as 0.037 dB/cm. Tolerance analysis shows that the PBS can still maintain good performance under the ±1% deviation of structural parameters.
[1] Costa D, Yacoub M 2008 Electron. Lett. 44 214Google Scholar
[2] Xu J, Zhang X C 2006 Appl. Phys. Lett. 88 151107Google Scholar
[3] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar
[4] Liu H B, Plopper G, Earley S, Chen Y Q, Ferguson B, Zhang X C 2007 Biosens. Bioelectron. 22 1075Google Scholar
[5] 孟淼, 严德贤, 李九生, 孙帅 2020 物理学报 69 167801Google Scholar
Meng M, Yan D X, Li J S, Sun S 2020 Acta Phys. Sin. 69 167801Google Scholar
[6] Hui Z Q, Zhang T T, Han D D, Zhao F, Zhang M Z, Gong J M 2021 J. Infrared Millimeter Waves 40 616Google Scholar
[7] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar
[8] Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O’Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 27152Google Scholar
[9] Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar
[10] Li J S, Zouhdi S 2012 IEEE Photonics Technol. Lett. 24 625Google Scholar
[11] Li D, Li J S 2020 Opt. Commun. 472 125862Google Scholar
[12] Xiong H, Ji Q, Bashir T, Yang F 2020 Opt. Express 28 13884Google Scholar
[13] Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693Google Scholar
[14] Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407Google Scholar
[15] Liu H, Li J S 2014 Optoelectron. Lett. 10 325Google Scholar
[16] Niu T M, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C 2014 Opt. Express 22 16148Google Scholar
[17] Lai W, Born N, Schneider L M, Rahimi-Iman A, Balzer J C, Koch M 2015 Opt. Mater. Express 5 2812Google Scholar
[18] Li S S, Zhang H, Bai J, Liu W W, Jiang Z W, Chang S J 2014 IEEE Photonics Technol. Lett. 26 1399Google Scholar
[19] Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Appl. Opt. 52 3305Google Scholar
[20] Chen H Z, Yan G F, Forsberg E, He S L 2016 Appl. Opt. 55 6236Google Scholar
[21] 汪静丽, 刘洋, 钟凯 2017 物理学报 66 024209Google Scholar
Wang J L, Liu Y, Zhong K 2017 Acta Phys. Sin. 66 024209Google Scholar
[22] Zhu Y F, Liu X, Rao C F, Zhong H, Luo H M, Chen Y H, Ye Z Q, Wang H 2018 Opt. Eng. 57 086112Google Scholar
[23] Wang B K, Tian F J, Liu G Y, Bai R L, Yang X H, Zhang J Z 2021 Opt. Commun. 480 126463Google Scholar
[24] Benabid F, Knight J C, Antonopoulos G, Russell P 2002 Science 298 399Google Scholar
[25] Pearce G J, Wiederhecker G S, Poulton C G, Burger S, Russell P S J 2007 Opt. Express 15 12680Google Scholar
[26] Islam M S, Sultana J, Rana S, Islam M R, Faisal M, Kaijage S F, Abbott D 2017 Opt. Fiber Technol. 34 6Google Scholar
[27] Nielsen K, Rasmussen H K, Adam A J L, Planken P C M, Bang O, Jepsen P U 2009 Opt. Express 17 8592Google Scholar
[28] Khanarian G, Celanese H 2001 Opt. Eng. 40 1024Google Scholar
[29] Hou M X, Zhu F, Wang Y, Wang Y P, Liao C R, Liu S, Lu P X 2016 Opt. Express 24 27890Google Scholar
[30] Ding W, Wang Y Y 2015 Opt. Express 23 21165Google Scholar
[31] Florous N J, Saitoh K, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1231Google Scholar
[32] Qu Y W, Yuan J H, Zhou X, Li F, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P, Yu C X 2020 J. Opt. Soc. Am. B 37 396410Google Scholar
[33] Zhang Y N, Xue L, Qiao D, Guang Z 2019 Optik 207 163817Google Scholar
[34] Wu Z Q, Zhou X Y, Xia H D, Shi Z H, Huang J, Jiang X D, Wu W D 2017 Appl. Opt. 56 2288Google Scholar
[35] Cucinotta A, Selleri S, Vincetti L, Zoboli M 2002 J. Light Technol. 20 1433Google Scholar
[36] Falkenstein P, Merritt C D, Justus B L 2004 Opt. Lett. 29 1858Google Scholar
[37] Xian F, Mairaj A K, Hewak D, Monro T M 2005 J. Light Technol. 23 2046Google Scholar
[38] Wang L L, Zhang Y N, Ren L Y, Wang X Z, Li T H, Hu B W, Li Y L, Zhao W, Chen X H 2005 Chin. Opt. Lett. 3 S94
[39] Sultana J, Islam M S, Cordeiro C M B, Habib M S, Dinovitser A, Ng B, Abbott D 2020 IEEE Access 8 113309Google Scholar
[40] Cruz A L S, Serrão V A, Barbosa C L, Franco M A R, Cordeiro C M B, Argyros A, Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI45
[41] Van P L D, Gorecki J, Fokoua E N, Apostolopoulos V, Poletti F 2018 Appl. Opt. 57 3953Google Scholar
[42] Kumar V, Varshney R K, Kumar S 2021 Results in Opt. 4 100094Google Scholar
[43] Kumar V, Varshney R K, Kumar S 2020 Appl. Opt. 59 1974Google Scholar
[44] Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K, Yang J C 2013 IEEE Photonics J. 5 7101410Google Scholar
[45] Vera E R, Restrepo J Ú, Durango C J, Cardona J M, Cardona N G 2018 IEEE Photonics J. 10 1Google Scholar
[46] Tian F J, Liu G Y, Luo J F, Yao C Y, Li L, Yang X H, Zhang J Z 2021 Optik 225 165862Google Scholar
-
图 2 当固定参数r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm时, r1分别为375, 380, 385 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR
Fig. 2. Variation of coupling length and CLR: (a) Coupling length on frequency when r1 varies from 375 to 385 μm when r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.
图 3 当固定参数r1 = 380 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm时, r2分别为156, 160, 164 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR
Fig. 3. Variation of coupling length and CLR: (a) Coupling length on frequency when r2 varies from 156 to 164 μm when r1 = 380 μm, r3 = 174.1 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.
图 4 当固定参数r1 = 380 μm, r2 = 160 μm, Λ = 810 μm, t = 90 μm时, r3分别为170.1, 174.1, 178.1 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR
Fig. 4. Variation of coupling length and CLR: (a) Coupling length on frequency when r3 varies from 170.1 to 178.1 μm when r1 = 380 μm, r2 = 160 μm, Λ = 810 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.
图 5 当固定参数r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, t = 90 μm时, Λ分别为805, 810, 815 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR
Fig. 5. Variation of coupling length and CLR: (a) Coupling length on frequency when Λ varies from 805 to 815 μm when r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, t = 90 μm; (b) CLR in x-polarization and y-polarization.
图 6 当固定参数r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm时, t分别为87, 90, 93 μm时耦合长度和CLR与频率的变化关系图 (a)耦合长度; (b) CLR
Fig. 6. Variation of coupling length and CLR: (a) Coupling length on frequency when t varies from 87 to 93 μm when r1 = 380 μm, r2 = 160 μm, r3 = 174.1 μm, Λ = 810 μm; (b) CLR in x-polarization and y-polarization.
图 7 双芯负曲率光纤太赫兹偏振分束器模场分布图 (a) x偏振偶模; (b) y偏振偶模; (c) x偏振奇模; (d) y偏振奇模
Fig. 7. Distributions of four supermodes in the proposed dual core negative curvature fiber terahertz polarization beam splitter: (a) x-polarized even mode; (b) y-polarized even mode; (c) x-polarized odd mode; (d) y-polarized odd mode.
图 12 A芯中分别输入x偏振光和y偏振光时, 双芯的模式传输情况 (a) A芯中x偏振光; (b) B芯中x偏振光; (c) A芯中y偏振光; (d) B芯中y偏振光
Fig. 12. Mode transmission of dual core when x-polarized light and y-polarized light are input into core A respectively: (a) x-polarization in core A; (b) x-polarization in core B; (c) y-polarization in core A; (d) y-polarization in core B.
表 1 光纤型太赫兹PBS性能比较
Table 1. Performance comparison of optical fiber terahertz PBS.
结构 中心频率/THz 消光比/dB 工作带宽/THz 传输损耗/(dB·cm–1) 分束器长度/cm Zhu, Chen, et al. (2013)[44] 1 73.86 0.032 0.27 3.36 Chen, Yan, et al. (2016)[20] 0.6 54 0.013 0.28 1.43 E. Reyes-Vera, et al. (2018)[45] 1 68 0.15 1.5 10.9 Zhu, Liu, et al. (2018)[22] 1 70 0.046 0.4 1.27 Kumar, Varshney, et al. (2020)[42] 0.75 20 0.03 10 Tian, Liu, et al. (2021)[46] 1 64.64 0.02 0.51 1.184 Wang, Tian, et al. (2021)[23] 1 20.8 0.01 0.15 0.865 本文工作 1 120.8 0.024 0.037 6.224 -
[1] Costa D, Yacoub M 2008 Electron. Lett. 44 214Google Scholar
[2] Xu J, Zhang X C 2006 Appl. Phys. Lett. 88 151107Google Scholar
[3] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266Google Scholar
[4] Liu H B, Plopper G, Earley S, Chen Y Q, Ferguson B, Zhang X C 2007 Biosens. Bioelectron. 22 1075Google Scholar
[5] 孟淼, 严德贤, 李九生, 孙帅 2020 物理学报 69 167801Google Scholar
Meng M, Yan D X, Li J S, Sun S 2020 Acta Phys. Sin. 69 167801Google Scholar
[6] Hui Z Q, Zhang T T, Han D D, Zhao F, Zhang M Z, Gong J M 2021 J. Infrared Millimeter Waves 40 616Google Scholar
[7] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar
[8] Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O’Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 27152Google Scholar
[9] Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar
[10] Li J S, Zouhdi S 2012 IEEE Photonics Technol. Lett. 24 625Google Scholar
[11] Li D, Li J S 2020 Opt. Commun. 472 125862Google Scholar
[12] Xiong H, Ji Q, Bashir T, Yang F 2020 Opt. Express 28 13884Google Scholar
[13] Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Martí J 2009 Appl. Opt. 48 2693Google Scholar
[14] Ren L S, Jiao Y C, Li F, Zhao J J, Zhao G 2011 IEEE Antennas Wirel. Propag. Lett. 10 407Google Scholar
[15] Liu H, Li J S 2014 Optoelectron. Lett. 10 325Google Scholar
[16] Niu T M, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D, Bhaskaran M, Sriram S, Fumeaux C 2014 Opt. Express 22 16148Google Scholar
[17] Lai W, Born N, Schneider L M, Rahimi-Iman A, Balzer J C, Koch M 2015 Opt. Mater. Express 5 2812Google Scholar
[18] Li S S, Zhang H, Bai J, Liu W W, Jiang Z W, Chang S J 2014 IEEE Photonics Technol. Lett. 26 1399Google Scholar
[19] Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Appl. Opt. 52 3305Google Scholar
[20] Chen H Z, Yan G F, Forsberg E, He S L 2016 Appl. Opt. 55 6236Google Scholar
[21] 汪静丽, 刘洋, 钟凯 2017 物理学报 66 024209Google Scholar
Wang J L, Liu Y, Zhong K 2017 Acta Phys. Sin. 66 024209Google Scholar
[22] Zhu Y F, Liu X, Rao C F, Zhong H, Luo H M, Chen Y H, Ye Z Q, Wang H 2018 Opt. Eng. 57 086112Google Scholar
[23] Wang B K, Tian F J, Liu G Y, Bai R L, Yang X H, Zhang J Z 2021 Opt. Commun. 480 126463Google Scholar
[24] Benabid F, Knight J C, Antonopoulos G, Russell P 2002 Science 298 399Google Scholar
[25] Pearce G J, Wiederhecker G S, Poulton C G, Burger S, Russell P S J 2007 Opt. Express 15 12680Google Scholar
[26] Islam M S, Sultana J, Rana S, Islam M R, Faisal M, Kaijage S F, Abbott D 2017 Opt. Fiber Technol. 34 6Google Scholar
[27] Nielsen K, Rasmussen H K, Adam A J L, Planken P C M, Bang O, Jepsen P U 2009 Opt. Express 17 8592Google Scholar
[28] Khanarian G, Celanese H 2001 Opt. Eng. 40 1024Google Scholar
[29] Hou M X, Zhu F, Wang Y, Wang Y P, Liao C R, Liu S, Lu P X 2016 Opt. Express 24 27890Google Scholar
[30] Ding W, Wang Y Y 2015 Opt. Express 23 21165Google Scholar
[31] Florous N J, Saitoh K, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1231Google Scholar
[32] Qu Y W, Yuan J H, Zhou X, Li F, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P, Yu C X 2020 J. Opt. Soc. Am. B 37 396410Google Scholar
[33] Zhang Y N, Xue L, Qiao D, Guang Z 2019 Optik 207 163817Google Scholar
[34] Wu Z Q, Zhou X Y, Xia H D, Shi Z H, Huang J, Jiang X D, Wu W D 2017 Appl. Opt. 56 2288Google Scholar
[35] Cucinotta A, Selleri S, Vincetti L, Zoboli M 2002 J. Light Technol. 20 1433Google Scholar
[36] Falkenstein P, Merritt C D, Justus B L 2004 Opt. Lett. 29 1858Google Scholar
[37] Xian F, Mairaj A K, Hewak D, Monro T M 2005 J. Light Technol. 23 2046Google Scholar
[38] Wang L L, Zhang Y N, Ren L Y, Wang X Z, Li T H, Hu B W, Li Y L, Zhao W, Chen X H 2005 Chin. Opt. Lett. 3 S94
[39] Sultana J, Islam M S, Cordeiro C M B, Habib M S, Dinovitser A, Ng B, Abbott D 2020 IEEE Access 8 113309Google Scholar
[40] Cruz A L S, Serrão V A, Barbosa C L, Franco M A R, Cordeiro C M B, Argyros A, Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI45
[41] Van P L D, Gorecki J, Fokoua E N, Apostolopoulos V, Poletti F 2018 Appl. Opt. 57 3953Google Scholar
[42] Kumar V, Varshney R K, Kumar S 2021 Results in Opt. 4 100094Google Scholar
[43] Kumar V, Varshney R K, Kumar S 2020 Appl. Opt. 59 1974Google Scholar
[44] Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K, Yang J C 2013 IEEE Photonics J. 5 7101410Google Scholar
[45] Vera E R, Restrepo J Ú, Durango C J, Cardona J M, Cardona N G 2018 IEEE Photonics J. 10 1Google Scholar
[46] Tian F J, Liu G Y, Luo J F, Yao C Y, Li L, Yang X H, Zhang J Z 2021 Optik 225 165862Google Scholar
计量
- 文章访问数: 5320
- PDF下载量: 101
- 被引次数: 0