搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝对重力测量中振动传感器振动补偿性能的分析

文艺 伍康 王力军

引用本文:
Citation:

绝对重力测量中振动传感器振动补偿性能的分析

文艺, 伍康, 王力军

Analysis of vibration correction performance of vibration sensor for absolute gravity measurement

Wen Yi, Wu Kang, Wang Li-Jun
PDF
HTML
导出引用
  • 绝对重力测量的精度主要受振动噪声的限制. 振动补偿是一种简单可行的振动噪声处理方法, 它通过传感器探测振动噪声来对测量结果进行修正. 现阶段对于不同传感器的振动补偿性能缺乏系统的分析与评估, 仅停留在应用阶段. 本文从理论出发分析了传感器性能对补偿效果的影响, 并通过实验评估了不同振动环境下不同传感器的振动补偿性能. 实验结果显示, 采用低噪声地震计的振动补偿效果主要受带宽和量程的限制, 在安静环境下可实现优于百微伽的单次测量标准差, 但补偿效果随振动噪声高频成分的增强而降低, 在动态环境下地震计则受量程限制而无法工作. 采用加速度计的振动补偿效果主要受分辨率的限制, 在复杂和动态环境下均可实现毫伽量级的单次测量标准差. 本文为振动补偿技术应用于绝对重力测量提供了振动传感器选型的理论和实践依据, 有望为振动补偿技术的进一步发展提供技术支撑.
    Absolute gravity measurement refers to the measurement of the absolute value of gravitational acceleration (g, approximately 9.8 m/s2). The precision of absolute gravity measurement is limited mainly by vibration noises. Vibration correction is a simple and feasible way to deal with vibration noises, which corrects the measurement results by detecting vibration noises with a sensor. At present, the vibration correction performance of different sensors lacks systematic analysis and evaluation. In this paper, the theoretical analysis of how the sensor characteristics affect the correction performance is carried out. The vibration correction performances of three sensors, two different seismometers and one accelerometer, are evaluated experimentally in the three cases with different vibration noises. The experimental results show that the correction precision obtained by using low-noise seismometer is limited mainly by its bandwidth and range. In case I i.e. the quiet environment, the standard deviation of corrected results obtained by using both seismometers can reach tens of μGal (1 μGal = 10–8 m/s2), which is close to that obtained by using an ultra-low-frequency vibration isolator. However, in case II i.e. the noisy environment, the standard deviation of corrected results obtained by both seismometers increase to hundreds of μGal due to the enhancement of high-frequency vibration components. This means that the correction performances of both seismometers deteriorate, and the performance of seismometer with narrower bandwidth turns even worse. Moreover, two seismometers cannot even work in case III with stronger vibration noises due to the range limitation. On the other hand, the correction precision obtained by using accelerometer is affected mainly by its resolution which is on the order of mGal (1mGal = 10–5 m/s2). Its bandwidth can reach hundreds of or even thousands of hertz and its range is generally over ±2 g, which is large enough to meet the needs for noisy and dynamic applications. In case I, the standard deviation after correction with accelerometer is larger than that before correction. This is because the intensity of vibration noises in this case is close to or even smaller than the self-noise of accelerometer so that it could not be detected effectively by accelerometer. In case II, the resolution of accelerometer is sufficient to detect the vibration noises effectively. The standard deviation of the results is reduced from 2822 μGal to 1374 μGal after correction with accelerometer, and equal to a precision of 0.1 mGal after 100 drops. In case III where the amplitude of vibration noise rises to 0.1 m/s2 and seismometer cannot work, the accelerometer could still achieve a precision of 0.3 mGal after 100 drops. The systematic deviation is corrected from –1158 mGal to –285 μGal and the standard deviation is reduced from 34 mGal to 3.3 mGal. Therefore, the low-noise seismometer is more suitable for vibration correction in a quiet environment with stable foundation, which could realize a standard deviation superior to hundreds of μGal, while the accelerometer is more appropriate for vibration correction in a complex or dynamic environment, which could achieve a standard deviation of mGal-level. Finally, the present results and analysis provide a theoretical guidance for selecting and designing the sensors in vibration correction applications.
      通信作者: 伍康, kangwu@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61627824, 41604151)资助的课题
      Corresponding author: Wu Kang, kangwu@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61627824, 41604151)
    [1]

    Marson I, Faller J 1986 J. Phys. E:Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J 2003 Metrologia 39 425Google Scholar

    [3]

    Faller J 2005 J. Res. Nat. Inst. Stand. Technol. 110 559Google Scholar

    [4]

    Marson I 2012 Int. J. Geophys. 2012 687813Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [7]

    Saulson P R 1984 Rev. Sci. Instrum. 55 1315Google Scholar

    [8]

    Haubrich R A, McCamy K 1969 Rev. Geophys. 7 539Google Scholar

    [9]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [10]

    Cessaro R K 1994 Bull. Seismol. Soc. Am. 84 142Google Scholar

    [11]

    Timmen L, Rder R H, Schnüll M 1993 Bulletin Géodésique 67 71Google Scholar

    [12]

    Svitlov S 2012 Metrologia 49 706Google Scholar

    [13]

    Wen Y, Wu K, Guo M Y, Wang L J 2021 IEEE Trans. Instrum. Meas. 70 1003607Google Scholar

    [14]

    Rinker R, Faller J 1981 Proceedings of Precision Measurement and Fundamental Constants Gaithersburg, Maryland, USA, June 8–12, 1981 p411

    [15]

    Brown J M, Niebauer T M, Klingele E 2001 Int. Assoc. Geod. Symp. 123 223Google Scholar

    [16]

    Wang G, Hu H, Wu K, Wang L J 2017 Meas. Sci. Technol. 28 035001Google Scholar

    [17]

    Qian J, Wang G, Wu K, Wang L J 2018 Meas. Sci. Technol. 29 025005Google Scholar

    [18]

    许翱鹏 2016 博士学位论文 (浙江: 浙江大学)

    Xu A P 2016 Ph. D. Dissertation (Zhejiang: Zhejiang University) (in Chinese)

    [19]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [20]

    Merlet S, Le Gouët J, Bodart Q, Clairon A, Landragin A, Pereira dos Santos F, Rouchon P 2009 Metrologia 46 87Google Scholar

    [21]

    Baumann H 2012 Geophys. Prospect. 6 361Google Scholar

    [22]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [23]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [24]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [25]

    龙剑锋, 黄大伦, 滕云田, 吴琼, 郭欣 2012 地震学报 34 865Google Scholar

    Long J F, Huang D L, Teng Y T, Wu Q, Guo X 2012 Acta Seismologica Sinica 34 865Google Scholar

    [26]

    Wu S Q, Feng J Y, Li C Y, Su D W, Wang Q Y, Hu R, Hu L S, Xu J Y, Ji W X, Ullrich C, Palinkas V, Kostelecký J, Bilker-Koivula M, Näränen J, Merlet S, Le Moigne N, Mizushima S, Francis O, Choi I M, Newel D 2020 Metrologia 57 07002Google Scholar

    [27]

    Guo M Y, Wu K, Yao J M, Wen Y, Wang L J 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

  • 图 1  (a)激光干涉测量和(b)振动补偿的原理示意图

    Fig. 1.  Schematic diagram of (a) laser interferometry and (b) vibration correction.

    图 2  传感器输出与参考棱镜运动的关系

    Fig. 2.  Relationship between the output of sensor and the motion of reference retro-reflector.

    图 3  (a)基于振动补偿的T-3型绝对重力仪示意图; (b) 基于超低频垂直隔振的T-3型高精度绝对重力仪在西安中心地震台的重力测量结果.

    Fig. 3.  (a) Schematic diagram of T-3 type absolute gravimeter using vibration correction; (b) tidal gravity measurement conducted by T-3 type high-precision absolute gravimeter using ultra-low frequency vertical vibration isolator at Xi’an Seismological Station.

    图 4  实验采用的不同振动环境类型

    Fig. 4.  Different cases of vibration environments for experiments.

    图 5  (a)安静地基; (b)嘈杂地基; (c)万向悬架上的实验装置

    Fig. 5.  Experimental configuration on the (a) quiet ground, (b) noisy ground, (c) gimbal suspension.

    图 6  安静地基上的结果对比 (a)逐点分布; (b)含误差带的均值(k = 2)

    Fig. 6.  Comparison of results on the quiet ground: (a) Drop-to-drop scatter of g; (b) mean value with expanded uncertainty (k = 2).

    图 7  嘈杂地基上的结果对比 (a)逐点分布; (b)含误差带的均值(k = 2)

    Fig. 7.  Comparison of results on the noisy ground: (a) Drop-to-drop scatter of g; (b) mean value with expanded uncertainty (k = 2).

    图 8  万向悬架上JN06D测得单次下落过程中的振动加速度

    Fig. 8.  Vibration acceleration measured by JN06D on the gimbal during a single drop.

    图 9  万向悬架上的结果对比 (a)逐点分布; (b)含误差带的均值(k = 2)

    Fig. 9.  Comparison of results on the gimbal: (a) Drop-to-drop scatter of g; (b) mean value with expanded uncertainty (k = 2).

    图 10  安静地基上CMG单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b)补偿前后拟合残差对比

    Fig. 10.  Correction for single drop using CMG data on the quiet ground: (a) Residuals of measured trajectory Sm and measured vibration noise Nm; (b) residuals of measured trajectory Sm before and after correction.

    图 11  安静地基上CS60单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b)补偿前后拟合残差对比

    Fig. 11.  Correction for single drop using CS60 data on the quiet ground: (a) Residuals of measured trajectory Sm and measured vibration noise Nm; (b) residuals of measured trajectory Sm before and after correction.

    图 12  安静地基上JN06 D单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b)补偿前后拟合残差对比

    Fig. 12.  Correction for single drop using JN06 D data on the quiet ground: (a) Residuals of measured trajectory Sm and measured vibration noise Nm; (b) residuals of measured trajectory Sm before and after correction.

    图 13  嘈杂地基上CMG单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b)补偿前后拟合残差对比

    Fig. 13.  Correction for single drop using CMG data on the noisy ground: (a) Residuals of measured trajectory Sm and measured vibration noise Nm; (b) residuals of measured trajectory Sm before and after correction.

    图 14  嘈杂地基上CS60单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b)补偿前后拟合残差对比

    Fig. 14.  Correction for single drop using CS60 data on the noisy ground: (a) Residuals of measured trajectory Sm and measured vibration noise Nm; (b) residuals of measured trajectory Sm before and after correction.

    图 15  嘈杂地基上JN06 D单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b)补偿前后拟合残差对比

    Fig. 15.  Correction for single drop using JN06 D data on the noisy ground: (a) Residuals of measured trajectory Sm and measured vibration noise Nm; (b) residuals of measured trajectory Sm before and after correction.

    图 16  万向悬架上JN06 D单次补偿的情况 (a)原始拟合残差与探测位移拟合残差对比; (b) 补偿前后拟合残差对比

    Fig. 16.  Correction for single drop using JN06 D data on the gimbal: (a) Residuals of the measured trajectory Sm, and the measured vibration noise Nm; (b) residuals of the measured trajectory Sm before and after correction.

    表 1  振动传感器性能指标

    Table 1.  Characteristics of vibration sensors.

    型号自噪声–3 dB带宽量程
    CMG-3ESP低于NLNM (40 s ~ 16 Hz)0.0083—50 Hz5 mm/s
    CS60低于NLNM (100 s ~ 15 Hz)0.0167—80 Hz10 mm/s (1 Hz)
    JN06D–115 ~ –120 $ \rm dB\cdot g/\sqrt{Hz} $ (0 ~ 100 Hz)DC ~1360 Hz ± 30 g
    下载: 导出CSV

    表 2  实验结果

    Table 2.  Results of vibration correction experiments.

    未补偿地震计CMG地震计CS60加速度计JN06D隔振SuperSpring
    安静
    地基
    系统偏差Δg/μGal–8–9–1–753
    单次标准差STD/μGal120716657868
    嘈杂
    地基
    系统偏差Δg/μGal841285188
    单次标准差STD/μGal2822511289137493
    万向
    悬架
    系统偏差Δg/μGal–1158415–285
    单次标准差STD/μGal427933353
    下载: 导出CSV
  • [1]

    Marson I, Faller J 1986 J. Phys. E:Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J 2003 Metrologia 39 425Google Scholar

    [3]

    Faller J 2005 J. Res. Nat. Inst. Stand. Technol. 110 559Google Scholar

    [4]

    Marson I 2012 Int. J. Geophys. 2012 687813Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [7]

    Saulson P R 1984 Rev. Sci. Instrum. 55 1315Google Scholar

    [8]

    Haubrich R A, McCamy K 1969 Rev. Geophys. 7 539Google Scholar

    [9]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [10]

    Cessaro R K 1994 Bull. Seismol. Soc. Am. 84 142Google Scholar

    [11]

    Timmen L, Rder R H, Schnüll M 1993 Bulletin Géodésique 67 71Google Scholar

    [12]

    Svitlov S 2012 Metrologia 49 706Google Scholar

    [13]

    Wen Y, Wu K, Guo M Y, Wang L J 2021 IEEE Trans. Instrum. Meas. 70 1003607Google Scholar

    [14]

    Rinker R, Faller J 1981 Proceedings of Precision Measurement and Fundamental Constants Gaithersburg, Maryland, USA, June 8–12, 1981 p411

    [15]

    Brown J M, Niebauer T M, Klingele E 2001 Int. Assoc. Geod. Symp. 123 223Google Scholar

    [16]

    Wang G, Hu H, Wu K, Wang L J 2017 Meas. Sci. Technol. 28 035001Google Scholar

    [17]

    Qian J, Wang G, Wu K, Wang L J 2018 Meas. Sci. Technol. 29 025005Google Scholar

    [18]

    许翱鹏 2016 博士学位论文 (浙江: 浙江大学)

    Xu A P 2016 Ph. D. Dissertation (Zhejiang: Zhejiang University) (in Chinese)

    [19]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [20]

    Merlet S, Le Gouët J, Bodart Q, Clairon A, Landragin A, Pereira dos Santos F, Rouchon P 2009 Metrologia 46 87Google Scholar

    [21]

    Baumann H 2012 Geophys. Prospect. 6 361Google Scholar

    [22]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [23]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [24]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [25]

    龙剑锋, 黄大伦, 滕云田, 吴琼, 郭欣 2012 地震学报 34 865Google Scholar

    Long J F, Huang D L, Teng Y T, Wu Q, Guo X 2012 Acta Seismologica Sinica 34 865Google Scholar

    [26]

    Wu S Q, Feng J Y, Li C Y, Su D W, Wang Q Y, Hu R, Hu L S, Xu J Y, Ji W X, Ullrich C, Palinkas V, Kostelecký J, Bilker-Koivula M, Näränen J, Merlet S, Le Moigne N, Mizushima S, Francis O, Choi I M, Newel D 2020 Metrologia 57 07002Google Scholar

    [27]

    Guo M Y, Wu K, Yao J M, Wen Y, Wang L J 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

  • [1] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备. 物理学报, 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [2] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [3] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 基于系数搜索的振动补偿方法. 物理学报, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [6] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器. 物理学报, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [7] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 固定相位振动噪声对绝对重力测量的影响. 物理学报, 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [8] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [9] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [10] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211686
    [11] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [12] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [13] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [14] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [15] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [16] 李欣, 王禄娜, 郭士亮, 李志全, 杨明. 温度测量范围加倍的单微环传感器. 物理学报, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [17] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [18] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响. 物理学报, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [19] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿. 物理学报, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [20] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
计量
  • 文章访问数:  4828
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-10-09
  • 上网日期:  2022-02-14
  • 刊出日期:  2022-02-20

/

返回文章
返回