搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环丁烯-1,2-二羧酸分子的二维有机铁电分子晶体单层的设计与理论研究

童健 马亮

引用本文:
Citation:

基于环丁烯-1,2-二羧酸分子的二维有机铁电分子晶体单层的设计与理论研究

童健, 马亮

Theoretical design and study of two-dimensional organic ferroelectric monolayer based on cyclobutene-1,2-dicarboxylic acid

Tong Jian, Ma Liang
PDF
HTML
导出引用
  • 有机分子铁电材料相较于传统无机铁电材料具有轻质、柔性、不含重金属原子和成本低等诸多优点, 长期以来得到了广泛的关注和研究. 近年来, 原子厚度的二维无机铁电材料的研究取得了突破性进展, 因而备受关注, 然而二维有机铁电材料的设计与研究却鲜有报道. 本文基于密度泛函理论方法设计了一种以环丁烯-1,2-二羧酸(cyclobutene-1,2-dicarboxylic acid, CBDC)分子为结构单元的二维单层有机铁电分子晶体. 由于CBDC分子晶体内部氢键的链状排布, 导致其块体呈现出明显的层状结构, 计算发现内部的氢键链使得CBDC分子晶体块体具有各向异性的剥离能, 因此有望由沿着剥离能最低的(102)晶面进行机械/化学剥离而获得相应的单层有机铁电分子晶体. 理论计算预测CBDC (102)分子晶体单层的面内自发极化约0.39 × 10–6 μC/cm, 可与部分无机同类相比拟. 计算表明CBDC (102)分子晶体单层具有较高的极化反转势垒, 且对外加单轴应力的响应较为敏感. CBDC (102)单层有机铁电分子晶体的高面内自发极化以及易被界面调控的极化反转势垒使其可被应用于轻质无金属及柔性铁电器件.
    Compared with traditional inorganic ferroelectric materials, organic molecular ferroelectric materials possess many advantages, such as light weight, flexibility, no heavy metal atoms and low cost, and have received extensive attention for a long time. In recent years, atomic-thick two-dimensional (2D) inorganic ferroelectric materials have achieved breakthrough and attracted much attention. However, there are few reports on the design and research of two-dimensional organic ferroelectric materials. In this paper, we theoretically propose a 2D monolayer organic ferroelectric molecular crystal with the cyclobutene-1,2-dicarboxylic acid (CBDC) molecules as the building block based on density functional theory calculations. The bulk of CBDC molecular crystals clearly shows layered structure due to the chain-like arrangement of hydrogen bonds in crystal. It is found that the internal hydrogen bond chains give rise to the anisotropic cleavage energy values along different crystal planes of the CBDC molecular crystal bulk. Theoretical calculation suggests that the CBDC based 2D monolayer organic ferroelectric molecular crystal can be achieved by the mechanical/chemical peeling along the (102) crystal plane because of the lowest cleavage energy. It is predicted that the in-plane spontaneous polarization of the CBDC (102) molecular crystal monolayer is ~0.39 × 10–6 μC/cm, which is comparable to those of some inorganic counterparts. Calculations also indicate that the CBDC (102) molecular crystal monolayer shows a high polarization reversal barrier and is sensitive to the external uniaxial stress. The CBDC (102) monolayer organic ferroelectric molecular crystal reveals high in-plane spontaneous polarization with polarization reversal barrier easily modulated by the interface strain engineering, thereby rendering it great potential in lightweight, metal-free and flexible ferroelectric devices.
      通信作者: 马亮, liang.ma@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21903014)和江苏省基础研究计划(批准号: BK20190328)资助的课题.
      Corresponding author: Ma Liang, liang.ma@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21903014) and the Basic Research Program of Jiangsu Province, China (Grant No. BK20190328).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [4]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [5]

    Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L, Yu T 2014 Adv. Opt. Mater. 2 131Google Scholar

    [6]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [7]

    Cai Y, Lan J, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar

    [8]

    Profeta G, Calandra M, Mauri F 2012 Nat. Phys. 8 131Google Scholar

    [9]

    Zhou J J, Feng W, Liu C C, Guan S, Yao Y 2014 Nano Lett. 14 4767Google Scholar

    [10]

    Li X, Yang J 2014 J. Mater. Chem. C 8 8098Google Scholar

    [11]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808Google Scholar

    [12]

    Bune A V, Fridkin V M, Ducharme S, Blinov L M, Palto S P, Sorokin A V, Yudin S G, Zlatkin A 1998 Nature 391 874Google Scholar

    [13]

    Blinov L M, Fridkin V M, Palto S P, Bune A V, Dowben P A, Ducharme S 2000 Phys. Usp. 43 243Google Scholar

    [14]

    Mehta R R, Silverman B D, Jacobs J T 1973 J. Appl. Phys. 44 3379Google Scholar

    [15]

    Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 1650Google Scholar

    [16]

    Gruverman A, Wu D, Lu H, Wang Y, Jang H W, Folkman C M, Zhuravlev M Y, Felker D, Rzchowski M, Eom C B, Tsymbal E Y 2009 Nano Lett. 9 3539Google Scholar

    [17]

    Jin Hu W, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [18]

    Wang H, Liu Z R, Yoong H Y, Paudel T R, Xiao J X, Guo R, Lin W N, Yang P, Wang J, Chow G M, Venkatesan T, Tsymbal E Y, Tian H, Chen J S 2018 Nat. Commun. 9 3319Google Scholar

    [19]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [20]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [21]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [22]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236Google Scholar

    [23]

    Liu C, Wan W, Ma J, Guo W, Yao Y 2018 Nanoscale 10 7984Google Scholar

    [24]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [25]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427Google Scholar

    [26]

    Reimers J R, Tawfik S A, Ford M J 2018 Chem. Sci. 9 7620Google Scholar

    [27]

    Lai Y, Song Z, Wan Y, Xue M, Wang C, Ye Y, Dai L, Zhang Z, Yang W, Du H, Yang J 2019 Nanoscale 11 5163Google Scholar

    [28]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [29]

    Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [30]

    Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar

    [31]

    Ren Y, Dong S, Wu M 2018 ACS Appl. Mater. Interfaces 10 35361Google Scholar

    [32]

    Wu M, Duan T, Lu C, Fu H, Dong S, Liu J 2018 Nanoscale 10 9509Google Scholar

    [33]

    Valasek J 1921 Phys. Rev. 17 475Google Scholar

    [34]

    Furukawa T 1989 Phase Transitions 18 143Google Scholar

    [35]

    Naber R C, Asadi K, Blom P W, de Leeuw D M, de Boer B 2010 Adv. Mater. 22 933Google Scholar

    [36]

    Heremans P, Gelinck G H, Muller R, Baeg K J, Kim D Y, Noh Y Y 2011 Chem. Mater. 23 341Google Scholar

    [37]

    Tang Y Y, Li P F, Zhang W Y, Ye H Y, You Y M, Xiong R G 2017 J. Am. Chem. Soc. 139 13903Google Scholar

    [38]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506Google Scholar

    [39]

    Yang C K, Chen W N, Ding Y T, Wang J, Rao Y, Liao W Q, Tang Y Y, Li P F, Wang Z X, Xiong R G 2019 Adv. Mater. 3 1Google Scholar

    [40]

    Shi P P, Lu S Q, Song X J, Chen X G, Liao W Q, Li P F, Tang Y Y, Xiong R G 2019 J. Am. Chem. Soc. 141 18334Google Scholar

    [41]

    Ma L, Jia Y, Ducharme S, Wang J, Zeng X C 2019 J. Am. Chem. Soc. 141 1452Google Scholar

    [42]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [43]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800Google Scholar

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [45]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [46]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [47]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [48]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B. 47 1651Google Scholar

    [49]

    Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, Kumai R, Tokura Y 2010 Nature 463 789Google Scholar

    [50]

    Horiuchi S, Kumai R, Tokura Y 2011 Adv. Mater. 23 2098Google Scholar

    [51]

    Horiuchi S, Kagawa F, Hatahara K, Kobayashi K, Kumai R, Murakami Y, Tokura Y 2012 Nat. Commun. 3 1308Google Scholar

    [52]

    Horiuchi S, Kobayashi K, Kumai R, Ishibashi S 2017 Nat. Commun. 8 14426Google Scholar

  • 图 1  优化后的CBDC分子晶体结构图示 (a) CBDC块体的斜视图; (b)—(d)分别为晶胞沿a, b, c基矢方向的视图. 图中灰色、白色和红色小球分别指代碳原子、氢原子和氧原子

    Fig. 1.  Optimized structure of bulk of CBDC molecular crystal: (a) Perspective view of bulk CBDC; (b)–(d) view of bulk CBDC along a, b and c axis, respectively. The gray, white and red balls denote C, H and O atoms, respectively.

    图 2  优化后的块体3-HPLN分子沿晶胞不同基矢方向的晶体结构视图 (a) 基矢a方向; (b) 基矢b方向; (c) 基矢c方向. 图中灰色、乳白色和红色小球分别指代碳原子、氢原子和氧原子

    Fig. 2.  View of optimized structure of bulk 3-HPLN molecular crystal along different axes: (a) Along a axis; (b) along b axis; (c) along c axis. The gray, milk white and red balls denote C, H and O atoms, respectively.

    图 3  优化后的块体PhMDA分子沿晶胞不同基矢方向的晶体结构视图 (a) 基矢a方向; (b) 基矢b方向; (c) 基矢c方向. 图中灰色、乳白色和红色小球分别指代碳原子、氢原子和氧原子

    Fig. 3.  View of optimized structure of bulk PhMDA molecular crystal along different axes:. (a) Along a axis; (b) along b axis; (c) along c axis. The gray, milk white and red balls denote C, H and O atoms respectively.

    图 4  CBDC晶体的铁电机制. 图中绿色圆圈标注了氢键的位置, 其中质子的集体迁移导致了铁电极化由晶格$[20\bar{1}]$方向转为$ [\bar{2}01] $方向; 灰色、乳白色和红色小球分别指代碳原子、氢原子和氧原子

    Fig. 4.  Ferroelectric mechanism of CBDC crystal. Green circles mark the collective transfer of protons within the hydrogen bonds, leading to the orientation of polarity being reversed from $ [20\bar{1}] $ direction to $ [\bar{2}01] $ direction. The gray, milk white and red balls denote C, H and O atoms, respectively.

    图 5  CBDC分子晶体块体沿(102)晶面的剥离示意图. 其中左图中黄色平面代表(102)密勒晶面, 右图为(102)单层的顶视图. 灰色乳白色和红色小球分别指代碳原子、氢原子和氧原子.

    Fig. 5.  Exfoliation of CBDC bulk crystal along the (102) Millar plane. The yellow plane in left panel denotes the (102) plane. The right panel is the top view of the single-unit-thick (102) plane. The gray, white and red balls denote C, H and O atoms respectively.

    图 6  CBDC块体沿着(100), (010), (010)和(102)晶面的剥离能, 图中横坐标为相邻两单层之间相对于初始结构所拉开的距离

    Fig. 6.  Energy required to cleave the bulk of CBDC molecular crystal along (100), (010), (001) and (102) plane. The x axis denotes the interlayer distance of the two fractured sections compared with the original bulk crystal.

    图 7  (a) 顺电相下的CBDC (102), 绿色圆圈中质子处于相邻两个氧原子中间处; (b) 顺电相下的CBDC (102)中的CBDC分子结构示意图, 黄色平面为分子的对称面

    Fig. 7.  (a) Paraelectric phase of CBDC (102) monolayer crystal, the protons in green circles are located at the center of the adjacent oxygen atoms; (b) CBDC molecular in paraelectric phase, the yellow plane denotes symmetry plane of the molecular.

    图 8  CBDC (102)分子单层从顺电参考相(λ = 0)转变至铁电相(λ = 1)的过程中极化值的演变曲线

    Fig. 8.  Evolution curves of ferroelectric polarization for CBDC (102) monolayer crystal from the referenced paraelectric phase (λ = 0) to ferroelectric phase (λ = 1).

    图 9  CBDC (102)铁电极化反转路径的能量变化曲线

    Fig. 9.  Energy profile along the polarity reverse path of the CBDC (102) monolayer crystal.

    图 10  平行于极化方向的单轴压缩应力下单层CBDC (102)的极化反转能量曲线

    Fig. 10.  Potential energy curve for the polarity reversal of the CBDC (102) monolayer crystal under uniaxial compressive strain range of 1%–5%.

    图 11  平行于极化方向的单轴拉伸应力下CBDC (102)单层分子晶体的极化反转能量曲线

    Fig. 11.  Potential energy curve for the polarity reversal of the CBDC (102) monolayer crystal under uniaxial tensile strain range of 1%–5%.

    图 12  二维CBDC (102)单层分子晶体在–5%—5%单轴应力下的极化反转势垒变化曲线

    Fig. 12.  Ferroelectric reversing barrier of two-dimensional CBDC (102) monolayer molecular crystal under uniaxial strain from –5% to 5%.

    图 13  单层CBDC (102)的能带结构(带隙值为3.4 eV)

    Fig. 13.  Band structure of CBDC (102) monolayer crystal.

    图 14  石墨烯基底上的CBDC (102)单层分子晶体经过5 ps从头算分子动力学模拟后的结构图(NPT系综, 温度300 K, 时间步长1 fs) (a) 正视图; (b) 侧视图. 图(a)中绿色曲线指示了多条有序排列的氢键链, 为清晰起见, 图(a)中的石墨烯衬底已被隐去

    Fig. 14.  (a) Top and (b) side views of snapshot of the two-dimensional CBDC (102) monolayer supported on a graphene sheet, after 5 ps of AIMD simulation. The substrate in panel (a) is removed for clarity.

    表 1  铁电相CBDC分子晶体的自发极化

    Table 1.  Spontaneous polarization of ferroelectric phase of CBDC molecular crystal.

    Polarization/(μC·cm–2)
    abc
    Exp.8.6010
    DFT (Horiuchi[52])11.709.6
    DFT (Our work)11.709.5
    下载: 导出CSV

    表 2  CBDC (102)的晶格参数以及自发铁电极化值

    Table 2.  Lattice parameters and spontaneous ferroelectric polarization of CBDC (102).

    abγ/(°)Ps/(10–6 μC·cm–1)
    CBDC (102)14.9213.56900.39
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [4]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [5]

    Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L, Yu T 2014 Adv. Opt. Mater. 2 131Google Scholar

    [6]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [7]

    Cai Y, Lan J, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar

    [8]

    Profeta G, Calandra M, Mauri F 2012 Nat. Phys. 8 131Google Scholar

    [9]

    Zhou J J, Feng W, Liu C C, Guan S, Yao Y 2014 Nano Lett. 14 4767Google Scholar

    [10]

    Li X, Yang J 2014 J. Mater. Chem. C 8 8098Google Scholar

    [11]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808Google Scholar

    [12]

    Bune A V, Fridkin V M, Ducharme S, Blinov L M, Palto S P, Sorokin A V, Yudin S G, Zlatkin A 1998 Nature 391 874Google Scholar

    [13]

    Blinov L M, Fridkin V M, Palto S P, Bune A V, Dowben P A, Ducharme S 2000 Phys. Usp. 43 243Google Scholar

    [14]

    Mehta R R, Silverman B D, Jacobs J T 1973 J. Appl. Phys. 44 3379Google Scholar

    [15]

    Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 1650Google Scholar

    [16]

    Gruverman A, Wu D, Lu H, Wang Y, Jang H W, Folkman C M, Zhuravlev M Y, Felker D, Rzchowski M, Eom C B, Tsymbal E Y 2009 Nano Lett. 9 3539Google Scholar

    [17]

    Jin Hu W, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [18]

    Wang H, Liu Z R, Yoong H Y, Paudel T R, Xiao J X, Guo R, Lin W N, Yang P, Wang J, Chow G M, Venkatesan T, Tsymbal E Y, Tian H, Chen J S 2018 Nat. Commun. 9 3319Google Scholar

    [19]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [20]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [21]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [22]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236Google Scholar

    [23]

    Liu C, Wan W, Ma J, Guo W, Yao Y 2018 Nanoscale 10 7984Google Scholar

    [24]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [25]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427Google Scholar

    [26]

    Reimers J R, Tawfik S A, Ford M J 2018 Chem. Sci. 9 7620Google Scholar

    [27]

    Lai Y, Song Z, Wan Y, Xue M, Wang C, Ye Y, Dai L, Zhang Z, Yang W, Du H, Yang J 2019 Nanoscale 11 5163Google Scholar

    [28]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [29]

    Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [30]

    Wu M, Zeng X C 2017 Nano Lett. 17 6309Google Scholar

    [31]

    Ren Y, Dong S, Wu M 2018 ACS Appl. Mater. Interfaces 10 35361Google Scholar

    [32]

    Wu M, Duan T, Lu C, Fu H, Dong S, Liu J 2018 Nanoscale 10 9509Google Scholar

    [33]

    Valasek J 1921 Phys. Rev. 17 475Google Scholar

    [34]

    Furukawa T 1989 Phase Transitions 18 143Google Scholar

    [35]

    Naber R C, Asadi K, Blom P W, de Leeuw D M, de Boer B 2010 Adv. Mater. 22 933Google Scholar

    [36]

    Heremans P, Gelinck G H, Muller R, Baeg K J, Kim D Y, Noh Y Y 2011 Chem. Mater. 23 341Google Scholar

    [37]

    Tang Y Y, Li P F, Zhang W Y, Ye H Y, You Y M, Xiong R G 2017 J. Am. Chem. Soc. 139 13903Google Scholar

    [38]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506Google Scholar

    [39]

    Yang C K, Chen W N, Ding Y T, Wang J, Rao Y, Liao W Q, Tang Y Y, Li P F, Wang Z X, Xiong R G 2019 Adv. Mater. 3 1Google Scholar

    [40]

    Shi P P, Lu S Q, Song X J, Chen X G, Liao W Q, Li P F, Tang Y Y, Xiong R G 2019 J. Am. Chem. Soc. 141 18334Google Scholar

    [41]

    Ma L, Jia Y, Ducharme S, Wang J, Zeng X C 2019 J. Am. Chem. Soc. 141 1452Google Scholar

    [42]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [43]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8800Google Scholar

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [45]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [46]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [47]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [48]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B. 47 1651Google Scholar

    [49]

    Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, Kumai R, Tokura Y 2010 Nature 463 789Google Scholar

    [50]

    Horiuchi S, Kumai R, Tokura Y 2011 Adv. Mater. 23 2098Google Scholar

    [51]

    Horiuchi S, Kagawa F, Hatahara K, Kobayashi K, Kumai R, Murakami Y, Tokura Y 2012 Nat. Commun. 3 1308Google Scholar

    [52]

    Horiuchi S, Kobayashi K, Kumai R, Ishibashi S 2017 Nat. Commun. 8 14426Google Scholar

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文. 叠层/转角二维原子晶体结构与极化激元的近场光学表征. 物理学报, 2023, 72(2): 027102. doi: 10.7498/aps.72.20222145
    [3] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应. 物理学报, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [4] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [5] 杜晓莉, 张修丽, 刘宏波, 季鑫. 聚(偏氟乙烯-三氟乙烯)纳米薄膜极化反转与疲劳特性. 物理学报, 2015, 64(16): 167701. doi: 10.7498/aps.64.167701
    [6] 姜丽娜, 张玉滨, 董顺乐. 有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响. 物理学报, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [7] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [8] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响. 物理学报, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [9] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [10] 余超凡, 梁国栋, 曹锡金. 一维分子晶体系统的极化子-孤子压缩态、系统基态性质和量子涨落. 物理学报, 2008, 57(7): 4402-4411. doi: 10.7498/aps.57.4402
    [11] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [12] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究. 物理学报, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [13] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [14] 王 霆, 马博琴, 盛 艳, 程丙英, 张道中. 周期极化LiNbO3晶体中电极布置对反转畴扩张的影响. 物理学报, 2005, 54(10): 4761-4764. doi: 10.7498/aps.54.4761
    [15] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [16] 姚江宏, 陈亚辉, 许京军, 张光寅, 朱圣星. 近化学计量比铌酸锂晶体周期极化畴反转特性研究. 物理学报, 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [17] 李智强, 陈敏, 沈文彬, 李景德. 铁电极化子动力学理论. 物理学报, 2001, 50(12): 2477-2481. doi: 10.7498/aps.50.2477
    [18] 黄卓和, 陈传誉, 梁世东. 磁场中极性晶体板内的强耦合极化子. 物理学报, 1997, 46(4): 715-723. doi: 10.7498/aps.46.715
    [19] 庞小峰. 在准一维有机分子晶体中由超声孤子引起的M?ssbauer效应. 物理学报, 1993, 42(11): 1856-1867. doi: 10.7498/aps.42.1856
    [20] 陈传誉, 金佩琬. 二维极化子在磁场中的基态能量. 物理学报, 1990, 39(5): 814-822. doi: 10.7498/aps.39.814
计量
  • 文章访问数:  4402
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2021-11-12
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回