搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究

邓旭良 冀先飞 王德君 黄玲琴

引用本文:
Citation:

石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究

邓旭良, 冀先飞, 王德君, 黄玲琴

First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation

Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin
PDF
HTML
导出引用
  • 由于SiC禁带宽度大, 在金属/SiC接触界面难以形成较低的势垒, 制备良好的欧姆接触是目前SiC器件研制中的关键技术难题, 因此, 研究如何降低金属/SiC接触界面的肖特基势垒高度(SBH)非常重要. 本文基于密度泛函理论的第一性原理赝势平面波方法, 结合平均静电势和局域态密度计算方法, 研究了石墨烯作为过渡层对不同金属 (Ag, Ti, Cu, Pd, Ni, Pt)/SiC接触的SBH的影响. 计算结果表明, 单层石墨烯可使金属/SiC接触的SBH降低; 当石墨烯为2层时, SBH进一步降低且Ni, Ti接触体系的SBH呈现负值, 说明接触界面形成了良好的欧姆接触; 当石墨烯层数继续增加, SBH不再有明显变化. 通过分析接触界面的差分电荷密度以及局域态密度, SBH降低的机理可能主要是石墨烯C原子饱和了SiC表面的悬挂键并降低了金属诱生能隙态对界面的影响, 并且接触界面的石墨烯及其与金属相互作用形成的混合相具有较低的功函数. 此外, SiC/石墨烯界面形成的电偶极层也可能有助于势垒降低.
    In the production of SiC electronic devices, one of the main challenges is the fabrication of good Ohmic contacts due to the difficulty in finding the metals with low Schottky barriers of wide band gap SiC. Therefore, reducing the Schottky barrier height (SBH) at the metal/SiC interface is of great importance. In this paper, the effects of graphene intercalation on the SBH in different metals (Ag, Ti, Cu, Pd, Ni, Pt)/4H-SiC interfaces are studied by combining the average electrostatic potential and local density of states calculation methods based on first-principles plane wave pseudopotential density functional theory. The calculation results show that single-layer graphene intercalation can reduce the SBH of metal/4H-SiC contact. When the two layers of graphene are inserted, the SBH are further reduced. Especially, the contact between Ni and Ti exhibits negative SBH values, inferring that good Ohmic contacts are formed. When layers of graphene continue to increase, the SBH no longer changes obviously. By analyzing the differential charge density and the local density of states of the interface, the mechanism of SBH reduction may be that the dangling bonds on the SiC surface are saturated by the graphene C atoms and the influence of the metal-induced energy gap state at the interface is reduced, thereby reducing the interface state density. In addition, graphene and the corresponding new phases at the interface have low work functions. Moreover, an interfacial electric dipole layer may be formed at the SiC/graphene interface which also contributes to barrier reduction.
      通信作者: 王德君, dwang121@dlut.edu.cn ; 黄玲琴, lqhuang@jsnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 62074071, 61874017)、徐州市科技计划(批准号: KC21008)、2021江苏高校“青蓝工程”和江苏师范大学研究生科研与实践创新计划 (批准号: 2021XKT0183) 资助的课题
      Corresponding author: Wang De-Jun, dwang121@dlut.edu.cn ; Huang Ling-Qin, lqhuang@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074071, 61874017), the Xuzhou Science and Technology Project, China (Grant No. KC21008), the 2021 “Qinglan” Project of Jiangsu Higher Education Institutions, China, and the Jiangsu Normal University Postgraduate Scientific Research and Practice Innovation Project, China (Grant No. 2021XKT0183).
    [1]

    Tian R, Ma C, Wu J, Guo Z, Yang X, Fan Z 2021 J. Semicond. 42 061801Google Scholar

    [2]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [3]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [4]

    Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V, Piotrowska A 2016 Adv. Cond. Matter. Phys. 2016 9273702Google Scholar

    [5]

    Al-Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar

    [6]

    Nikitina I P, Vassilevski K V, Wright N G, Horsfall A B, O’Neill A G, Johnson C M 2005 J. Appl. Phys. 97 083709Google Scholar

    [7]

    Liu F, Hsia B, Carraro C, Pisano A P, Maboudian R 2010 Appl. Phys. Lett. 97 262107Google Scholar

    [8]

    Seyller T, Emtsev K V, Speck F, Gao K Y, Ley L 2006 Appl. Phys. Lett. 88 242103Google Scholar

    [9]

    Lundberg N, Östling M 1993 Appl. Phys. Lett. 63 3069Google Scholar

    [10]

    Reshanov S A, Emtsev K V, Speck F, Gao K Y, Seyller T K, Pensl G, Ley L 2008 Phys. Status Solidi B 245 1369Google Scholar

    [11]

    黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢 2021 物理学报 70 207302Google Scholar

    Huang L Q, Zhu J, Ma Y, Liang T, Lei C, Li Y W, Gu X G 2021 Acta Phys. Sin. 70 207302Google Scholar

    [12]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 25301Google Scholar

    [13]

    Nagashio K, Nishimura T, Kita K, Toriumi A 2009 International Electron Devices Meeting (IEDM) Baltimore, MD December 7–9, 2009 p527

    [14]

    Røst H I, Chellappan R K, Strand F S, Grubišić-Čabo A, Reed B P, Prieto M J, Tǎnase L C, Caldas L D S, Wongpinij T, Euaruksakul C, Schmidt T, Tadich A, Cowie B C C, Li Z, Cooil S P, Wells J W 2021 J. Phys. Chem. C 125 4243Google Scholar

    [15]

    Yoon H H, Song W, Jung S, Kim J, Mo K, Choi G, Jeong H Y, Lee J H, Park K 2019 ACS Appl. Mater. Inter. 11 47182Google Scholar

    [16]

    Wu Y, Ji L, Lin Z, Hong M, Wang S, Zhang Y 2019 Curr. Appl. Phys. 19 521Google Scholar

    [17]

    Jia Y, Sun X, Shi Z, Jiang K, Wu T, Liang H, Cui X, Lü W, Li D 2021 Diamond. Relat. Mater. 115 108355Google Scholar

    [18]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [19]

    Perdew J P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Ceperley D M, Berni J A 1980 Phys. Rev. Lett. 45 566Google Scholar

    [21]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [22]

    王奇, 唐法威, 侯超, 吕皓, 宋晓艳 2019 物理学报 68 077101Google Scholar

    Wang Q, Tang F W, Hou C, Lv H, Song X Y 2019 Acta Phys. Sin. 68 077101Google Scholar

    [23]

    Mattausch A, Pankratov O 2007 Phys. Rev. Lett. 99 076802Google Scholar

    [24]

    Xu B, Zhu C, He X, Zang Y, Lin S, Li L, Feng S, Lei Q 2018 Adv. Condens. Matter Phys. 2018 8010351

    [25]

    Li L, Jin W, Yang H, Gao K, Guo P, Pang X, Volinsky A A. 2018 Microelectron. Reliab. 83 119Google Scholar

    [26]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [27]

    Oh Y J, Lee A T, Noh H K, Chang K J 2013 Phys. Rev. B 87 075325Google Scholar

    [28]

    Kohyama M, Hoekstra J 2000 Phys. Rev. B 61 2672Google Scholar

    [29]

    Tanaka S, Tamura T, Okazaki K, Ishibashi S, Kohyama M 2006 Mater. Trans. 47 2690Google Scholar

    [30]

    Profeta G, Blasetti A, Picozzi S, Continenza A, Freeman A. J 2001 Phys. Rev. B 64 235312Google Scholar

    [31]

    Kozlov S M, Vines F, Görling A 2012 J. Phys. Chem. C 116 7360Google Scholar

    [32]

    Cicek A, Bülent U L U Ğ 2021 Balkan J. Electr. Comput. Eng. 9 171

    [33]

    王菁, 李美成 2000 半导体光电 21 261Google Scholar

    Wang J, Li M C 2000 Semicond. Opt. 21 261Google Scholar

    [34]

    Chen Y, Xu X, Liu P 2019 J. Phys. Chem. C 124 1362

    [35]

    Li J B, Wang X H, Wang W J 2020 J. Infrared Millimeter Waves 39 401

    [36]

    Song S M, Park J K, Sul O J, Cho B J 2012 Nano Lett. 12 3887Google Scholar

    [37]

    Heine V 1965 Phys. Rev. 138 A1689Google Scholar

    [38]

    Sajjad M, Yang X, Altermatt P, Singh N, Schwingenschlögl U, Wolf D S 2019 Appl. Phys. Lett. 114 071601Google Scholar

  • 图 1  单层石墨烯/SiC (0001)的接触界面 (a) 侧视图; (b) 俯视图

    Fig. 1.  Side view (a) and top view (b) of single-layer graphene on SiC(0001) surface.

    图 2  金属/SiC接触界面SBH与平均静电势关系的能带结构

    Fig. 2.  Schematic band diagram shows the relationship between SBH and planar-averaged local potentials for metal/SiC contact.

    图 3  Ti/1GR/SiC沿z轴的平均静电势

    Fig. 3.  The planar-averaged local potential for Ti/1GR/SiC along the z-axis.

    图 4  不同层数石墨烯过渡层对金属/SiC接触SBH的影响

    Fig. 4.  The effects of graphene intercalation on the SBH of metal/SiC contacts.

    图 5  Cu(111)/SiC体系在SiC区域的局域态密度图 (a) Cu/SiC; (b) Cu/1GR/SiC; (c) Cu/2GR/SiC; (d) Cu/3GR/SiC

    Fig. 5.  Local density of states of SiC region for (a) Cu/SiC, (b) Cu/1GR/SiC, (c) Cu/2GR /SiC, and (d) Cu/3GR/SiC systems.

    图 6  (a) Ni/1GR/4H-SiC(0001) 和 (b) Cu/1GR/4H-SiC(0001)的差分电荷密度图, 蓝色区域代表失去电子, 红色区域代表得到电子

    Fig. 6.  The difference of charge density for (a) the Ni/1GR/4H-SiC (0001) and (b) the Cu/1GR/4H-SiC (0001). The blue regions represent losing electrons. The red regions represent gaining electrons.

    图 7  (a) 金属/4H-SiC和 (b) 金属/GR/4H-SiC接触界面能带图

    Fig. 7.  Schematic band diagrams of (a) metal/4H-SiC and (b) metal/GR/4H-SiC.

    图 8  (a) Ti/4H-SiC, (b) Ti/1GR/4H-SiC, (c) Ti/2GR/4H-SiC, (d) Ti/3GR/4H-SiC 以及 (e) Pt/1GR/4H-SiC SiC顶层碳硅层的局域态密度图

    Fig. 8.  Local density of states of the first carbon silicon layer for (a) Ti/4H-SiC, (b) Ti/1GR/ 4H-SiC, (c) Ti/2GR/4H-SiC, (d) Ti/3GR/4H-SiC and (e) Pt/1GR/4H-SiC.

    表 1  Cu不同切面与4H-SiC(0001)接触体系的$ {E_{{\text{M/SiC}}}} $, $ {E_{\text{M}}} $, $ {E_{{\text{SiC}}}} $$ {W_{{\text{ad}}}} $

    Table 1.  $ {E_{{\text{M/SiC}}}} $, $ {E_{\text{M}}} $, $ {E_{{\text{SiC}}}} $and $ {W_{{\text{ad}}}} $ values for the different Cu planes contact to 4H-SiC(0001).

    界面体系$ {E_{{\text{M/SiC}}}} $/eV$ {E_{\text{M}}} $/eV$ {E_{{\text{SiC}}}} $/eV$ {W_{{\text{ad}}}} $/$(\rm J {\cdot} c{m^{ - 2} })$
    Cu(111)/4H-SiC(0001)–154329.42–134459.95–19851.120.0562
    Cu(110)/4H-SiC(0001)–164264.27–134455.87–29790.060.0279
    Cu(001)/4H-SiC(0001)–154340.26–134456.34–19865.270.0515
    下载: 导出CSV

    表 2  晶格失配后各金属超胞的Wm与理论值和文献[26]中实验值对比

    Table 2.  The calculated Wm values of the metal supercells after lattice mismatching, compared with the theoretical and the experimental values in reference [26].

    MetalWm/eV理论值/eV实验值[26]/eV
    Ag4.524.194.26
    Ti4.434.384.33
    Cu4.684.514.65
    Pd5.164.895.12
    Ni5.124.925.15
    Pt5.765.315.65
    下载: 导出CSV

    表 3  平均静电势与局域态密度计算方法计算的各接触体系${\phi _{{\text{Bn}}}}$值 (单位: eV)

    Table 3.  ${\phi _{{\text{Bn}}}}$ values for the contacts obtained from planar averaged electrostatic potential and local density of states calculation methods (in eV).

    计算方法GR layersAgTiCuPdNiPt
    平均静电势法01.21.51.21.51.11.6
    10.250.50.70.60.251.4
    20.1–0.10.60.5–0.450.8
    30.1–0.10.60.5–0.450.8
    局域态密度法011.211.311.3
    10.20.30.50.40.21
    20.1–0.150.40.3–0.50.9
    30.1–0.150.40.3–0.50.9
    下载: 导出CSV
  • [1]

    Tian R, Ma C, Wu J, Guo Z, Yang X, Fan Z 2021 J. Semicond. 42 061801Google Scholar

    [2]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [3]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [4]

    Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V, Piotrowska A 2016 Adv. Cond. Matter. Phys. 2016 9273702Google Scholar

    [5]

    Al-Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar

    [6]

    Nikitina I P, Vassilevski K V, Wright N G, Horsfall A B, O’Neill A G, Johnson C M 2005 J. Appl. Phys. 97 083709Google Scholar

    [7]

    Liu F, Hsia B, Carraro C, Pisano A P, Maboudian R 2010 Appl. Phys. Lett. 97 262107Google Scholar

    [8]

    Seyller T, Emtsev K V, Speck F, Gao K Y, Ley L 2006 Appl. Phys. Lett. 88 242103Google Scholar

    [9]

    Lundberg N, Östling M 1993 Appl. Phys. Lett. 63 3069Google Scholar

    [10]

    Reshanov S A, Emtsev K V, Speck F, Gao K Y, Seyller T K, Pensl G, Ley L 2008 Phys. Status Solidi B 245 1369Google Scholar

    [11]

    黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢 2021 物理学报 70 207302Google Scholar

    Huang L Q, Zhu J, Ma Y, Liang T, Lei C, Li Y W, Gu X G 2021 Acta Phys. Sin. 70 207302Google Scholar

    [12]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 25301Google Scholar

    [13]

    Nagashio K, Nishimura T, Kita K, Toriumi A 2009 International Electron Devices Meeting (IEDM) Baltimore, MD December 7–9, 2009 p527

    [14]

    Røst H I, Chellappan R K, Strand F S, Grubišić-Čabo A, Reed B P, Prieto M J, Tǎnase L C, Caldas L D S, Wongpinij T, Euaruksakul C, Schmidt T, Tadich A, Cowie B C C, Li Z, Cooil S P, Wells J W 2021 J. Phys. Chem. C 125 4243Google Scholar

    [15]

    Yoon H H, Song W, Jung S, Kim J, Mo K, Choi G, Jeong H Y, Lee J H, Park K 2019 ACS Appl. Mater. Inter. 11 47182Google Scholar

    [16]

    Wu Y, Ji L, Lin Z, Hong M, Wang S, Zhang Y 2019 Curr. Appl. Phys. 19 521Google Scholar

    [17]

    Jia Y, Sun X, Shi Z, Jiang K, Wu T, Liang H, Cui X, Lü W, Li D 2021 Diamond. Relat. Mater. 115 108355Google Scholar

    [18]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [19]

    Perdew J P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Ceperley D M, Berni J A 1980 Phys. Rev. Lett. 45 566Google Scholar

    [21]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [22]

    王奇, 唐法威, 侯超, 吕皓, 宋晓艳 2019 物理学报 68 077101Google Scholar

    Wang Q, Tang F W, Hou C, Lv H, Song X Y 2019 Acta Phys. Sin. 68 077101Google Scholar

    [23]

    Mattausch A, Pankratov O 2007 Phys. Rev. Lett. 99 076802Google Scholar

    [24]

    Xu B, Zhu C, He X, Zang Y, Lin S, Li L, Feng S, Lei Q 2018 Adv. Condens. Matter Phys. 2018 8010351

    [25]

    Li L, Jin W, Yang H, Gao K, Guo P, Pang X, Volinsky A A. 2018 Microelectron. Reliab. 83 119Google Scholar

    [26]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [27]

    Oh Y J, Lee A T, Noh H K, Chang K J 2013 Phys. Rev. B 87 075325Google Scholar

    [28]

    Kohyama M, Hoekstra J 2000 Phys. Rev. B 61 2672Google Scholar

    [29]

    Tanaka S, Tamura T, Okazaki K, Ishibashi S, Kohyama M 2006 Mater. Trans. 47 2690Google Scholar

    [30]

    Profeta G, Blasetti A, Picozzi S, Continenza A, Freeman A. J 2001 Phys. Rev. B 64 235312Google Scholar

    [31]

    Kozlov S M, Vines F, Görling A 2012 J. Phys. Chem. C 116 7360Google Scholar

    [32]

    Cicek A, Bülent U L U Ğ 2021 Balkan J. Electr. Comput. Eng. 9 171

    [33]

    王菁, 李美成 2000 半导体光电 21 261Google Scholar

    Wang J, Li M C 2000 Semicond. Opt. 21 261Google Scholar

    [34]

    Chen Y, Xu X, Liu P 2019 J. Phys. Chem. C 124 1362

    [35]

    Li J B, Wang X H, Wang W J 2020 J. Infrared Millimeter Waves 39 401

    [36]

    Song S M, Park J K, Sul O J, Cho B J 2012 Nano Lett. 12 3887Google Scholar

    [37]

    Heine V 1965 Phys. Rev. 138 A1689Google Scholar

    [38]

    Sajjad M, Yang X, Altermatt P, Singh N, Schwingenschlögl U, Wolf D S 2019 Appl. Phys. Lett. 114 071601Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响. 物理学报, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [5] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究. 物理学报, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [7] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究. 物理学报, 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [8] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [10] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [11] 黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁. Al掺杂6H-SiC的磁性研究与理论计算. 物理学报, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [12] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [13] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响. 物理学报, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [14] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [15] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [16] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [17] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究. 物理学报, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [18] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [19] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [20] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
计量
  • 文章访问数:  6666
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-11-06
  • 上网日期:  2022-03-03
  • 刊出日期:  2022-03-05

/

返回文章
返回