搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像

窦琳 麻艳娜 顾兆麒 刘家彤 谷付星

引用本文:
Citation:

基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像

窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星

Passive near-field optical scanning imaging based on semiconductor nanowire/tapered microfiber probe

Dou Lin, Ma Yan-Na, Gu Zhao-Qi, Liu Jia-Tong, Gu Fu-Xing
PDF
HTML
导出引用
  • 本文结合近场扫描结构和纳米线-微光纤耦合技术, 提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统. 该系统采用被动式纳米探针, 保留了纳米探针对样品表面反射光的强约束优势. 其理论收集效率为4.65‰, 相比于传统的金属镀膜近场探针收集效率提高了一个数量级, 可有效地提高扫描探针对样品形貌信息的检测能力; 而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合, 将检测的光强信号传输到远场进行光电探测, 最终实现对目标样品形貌的分析成像, 其样品宽度测量误差在7.28%以内. 该系统不需要外部激发光路, 利用显微镜自身光源进行远场照明, 被动扫描探针仅作为样品表面反射光的被动收集系统. 本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案, 可有效地降低探针的制备难度和目标光场的检测难度, 简化扫描成像的结构, 为近场光学扫描显微系统之后的发展提供新的思路.
    In this paper, we propose a passive near-field scanning imaging system by using the structure of cadmium sulfide (CdS) nanowire/tapered microfiber probe, which combines the near-field scanning structure and the nanowire/microfiber coupling technology. In the passive near-field scanning imaging system, a passive nanoprobe is adopted to detect the intensity change of the reflected light field on the sample surface, which not only retains the advantage of the nanoprobe for the strong restriction of the reflected light on the sample surface, but also reduces the interference of strong excitation light during detection. Through the high efficiently evanescent field coupling between the CdS nanowire and the tapered microfiber, the collected light signal is transmitted to the photodetector in the far field, and finally the imaging of the target sample morphology can be realized.At first, the light field model of the nanowire/tapered microfiber probe structure is verified by the finite element analysis method. The calculated collection efficiency from the sample to the probe is about 4.65‰ and the transmission efficiency from the nanowire to the tapered microfiber is about 74.47%. The collection efficiency is improved by an order of magnitude compared with traditional metal-coated near-field probe. In the experiments, a scanning step of 20 nm and a probe-sample distance of 230 nm are selected. The nanowire/tapered microfiber probe and traditional tapered fiber probe are both used to measure the widths of different CdSe nanoribbons samples, and the atomic force microscopy measurement is used as the benchmark to calculate their measurement error, which is increased about 3 times. By changing the angle θ between the probe and the sample, it is found that the resolution obtained using the designed nanowire/microfiber probe is always higher than only using the tapered microfiber probe. Comparing with the tapered microfiber probe scheme, the measurement error is reduced to a value less than 7.2%.In addition, compared with the active luminescence probe scheme, this passive near-field scanning scheme reduces the preparation complexity of the optical probe and the detection structure complexity of the optical system. The large microscopic illumination area can avoid the influence of the small laser spot size on imaging, and the imaging range is determined only by the travel distance of the linear stage. Therefore, our work may provide an attractive approach for developing new near-field scanning microscopy systems in the future.
      通信作者: 麻艳娜, mayanna@usst.edu.cn ; 谷付星, gufuxing@usst.edu.cn
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号: 62122054)资助的课题.
      Corresponding author: Ma Yan-Na, mayanna@usst.edu.cn ; Gu Fu-Xing, gufuxing@usst.edu.cn
    • Funds: Project supported by the Excellent Youth Scientists Fund of National Natural Science Foundation of China (Grant No. 62122054).
    [1]

    Trautman J K, Macklin J J, Brus L E, Betzig E 1994 Nature 369 40Google Scholar

    [2]

    Betzig E, Trautman J K 1992 Science 257 189Google Scholar

    [3]

    Ruckstuhl T, Verdes D, Winterflood C M, Seeger S 2011 Opt. Express 19 6836Google Scholar

    [4]

    胡睿璇, 潘冰洋. 杨玉龙, 张伟华 2017 物理学报 66 144209Google Scholar

    Hu R X, Pan B Y, Yang Y L, Zhang W H 2017 Acta. Phys. Sin. 66 144209Google Scholar

    [5]

    Rayleigh L 1896 On the Theory of Optical Images, with Special Reference to the Microscope (Cambridge: Cambridge University Press) p167

    [6]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468Google Scholar

    [7]

    Hermann R J, Gordon M J 2018 Annu. Rev. Chem. Biomol. 9 365Google Scholar

    [8]

    Novotny L, Stranick J S 2006 Annu. Rev. Phys. Chem. 57 303Google Scholar

    [9]

    Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V 2001 J. Microsc. 202 72Google Scholar

    [10]

    Bharadwaj P, Novotny L 2007 Opt. Express 15 14266Google Scholar

    [11]

    Kim Z H, Leone S R 2006 J. Phys. Chem. B 110 19804Google Scholar

    [12]

    Sun L, Bai B, Meng X, Cui T, Shang G, Wang J 2018 Opt. Express 26 24637Google Scholar

    [13]

    Novotny L, Hulst N V 2011 Nat. Photonics 5 83Google Scholar

    [14]

    Palomba S, Novotny L 2009 Nano Lett. 9 3801Google Scholar

    [15]

    Hoeppener C, Lapin Z J, Bharadwaj P, Novotny L 2012 Phys. Rev. Lett. 109 017402Google Scholar

    [16]

    Pan B, Yang Y, Bian J, Hu X, Zhang W 2019 Opt. Commun. 445 273Google Scholar

    [17]

    Wei B, Melli M, Caselli N, et al. 2012 Science 338 1317Google Scholar

    [18]

    伍晓芹, 王依霈, 童利民 2015 物理 44 356Google Scholar

    Wu X Q, Wang Y P, Tong L M 2015 Physics 44 356Google Scholar

    [19]

    谷付星 2012 博士学位论文 (杭州: 浙江大学)

    Gu F X 2012 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [20]

    Kim S, Yu N, Ma X, Zhu Y Z, Liu Q S, Liu M, Yan R X 2019 Nat. Photonics 13 636Google Scholar

    [21]

    Wu Y K, Liu X J, Qi X Z, Lu L, Guo G P, Guo G C, Ren X F 2021 Appl. Phys. Lett. 118 104002Google Scholar

    [22]

    Huang K, Yang S Tong L 2007 Appl. Opt. 46 1429Google Scholar

    [23]

    Marcatili E 1986 IEEE J. Quantum Electron. 22 988Google Scholar

    [24]

    Liao F, Wang Y, Peng T, Peng J, Gu Z Q, Yu H K, Chen T, Yu J X, Gu F X 2018 Adv. Opt. Mater. 6 1701012Google Scholar

    [25]

    Linghu S Y, Gu Z Q, Lu J S, et al. 2021 Nat. Commun. 12 385

    [26]

    王国军, 吴世法, 李旭峰, 李睿, 段建民, 潘石 2010 物理学报 59 192Google Scholar

    Wang G J, Wu S F, Li X F, Li R, Duan J M, Pan S 2010 Acta. Phys. Sin. 59 192Google Scholar

    [27]

    Zhang M Q, Wang J, Tian Q 2013 Chin. Phys. B 22 044202Google Scholar

    [28]

    王佳, 武晓宇, 孙琳, 周炳琨 2016 扫描近场光学显微镜和纳米光学测量 (北京: 科学出版社) 第167, 247页

    Wang J, Wu X Y, Sun L, Zhou B K 2016 Scanning Near-Field Optical Microscope and Nano-Optical Measurement (Beijing: Science Press) pp167, 247 (in Chinese)

    [29]

    石顺祥, 王学恩, 马琳 2014 物理光学与应用光学 (西安: 西安电子科技大学出版社) 第31, 77页

    Shi S X, Wang X E, Ma L 2014 Physical Optics and Applied Optics (Xi’an: Xidian University Press) pp31, 77 (in Chinese)

    [30]

    Yu J X, Liu F, Gu Z Q, Gu F X, Zhuang S L 2018 Opt. Express 26 6880Google Scholar

  • 图 1  被动式近场光学扫描成像系统 (a) 系统原理图; (b) 显微照明–成像部分原理图; (c) CdS纳米线/锥形微光纤探针. HC:主机, DMC:位移控制器, PZT:压电位移台, 3D stage:3维线性位移台, LS:照明光源, PD:光电转换器, EM:电放大器, OSC:示波器

    Fig. 1.  Passive near-field optical scanning imaging system: (a) Schematic diagram of the system; (b) schematic diagram of illumination-imaging part; (c) CdS nanowire/tapered microfiber structure. HC: host computer, DMC: displacement controller, PZT: piezo translation stage, LS: lighting source, 3D stage:3D linear stage, PD: photodetector, EM: electrical amplifier, OSC: oscilloscope.

    图 2  纳米线/锥形微光纤探针结构的光场模型 (a) 硅基底和硒化镉-硅基底的反射率; (b) 距样品表面 300 nm处的水平面的光场分布; (c) 纳米线/锥形微光纤探针结构倏逝场耦合(右侧插图为右侧白色实线处纳米线截面的TE模光场分布, 左侧圆形插图为左侧实线处锥形微光纤探针截面光场分布)

    Fig. 2.  Optical field model of nanowire/tapered microfiber structure: (a) Reflectance of silicon substrate and cadmium selenide-silicon substrate; (b) horizontal optical field distribution at 300 nm above the sample surface; (c) nanowire/ tapered microfiber structure evanescent field coupling (The right inset is the TE mode optical field distribution of the nanowire cross section at the solid white line on the right, and the left circular inset is the optical field distribution of the tapered microfiber cross section at the solid line on the left).

    图 3  扫描步长和探针-样品间距对系统成像质量的影响 (a) 不同扫描步长条件下的扫描结果; (b) 不同探针-样品间距条件下的扫描结果

    Fig. 3.  Influence of scanning step length and probe-sample distance on the image quality: (a) Scan results under different scan steps; (b) scan results under different probe-sample distances.

    图 4  不同样品的光学显微图和AFM扫描形貌图 (a), (b) 分别为S1的光学显微图和AFM扫描形貌图; (c), (d)分别为S2的光学显微图和AFM扫描形貌图; (e), (f)分别为S3的光学显微图和AFM扫描形貌图

    Fig. 4.  Optical microscope and AFM scanning morphology image of the three samples: (a), (b) Optical microscope image and AFM topography of S1; (c), (d) optical microscope image and AFM topography of S2; (e), (f) optical microscope image and AFM topography of S3.

    图 5  夹角θ = 23°时, 纳米线/锥形微光纤探针与传统锥形光纤探针对S1—S3样品的宽度测量值 (a), (d), (g) 分别为纳米线/锥形微光纤探针对S1—S3样品扫描的成像图; (b), (e), (h)分别为对应样品宽度的归一化测量结果; (c), (f), (i)同样条件下, 锥形光纤探针对S1—S3样品宽度的归一化测量结果

    Fig. 5.  The width measurement results of S1–S3 samples with the nanowire/tapered microfiber probe and traditional tapered microfiber probe at θ = 23°: (a), (d), (g) Imaging results of the samples S1–S3 scanned by the nanowire/tapered microfiber probe; (b), (e), (h) measurement results of the width of the samples S1–S3 by the nanowire/tapered microfiber probe; (c), (f), (i) measurement results of the width of the samples S1–S3 by tapered microfiber probe.

    表 1  CdS纳米线/锥形微光纤探针与传统锥形光纤探针测量结果对比

    Table 1.  Comparison of measurement results between CdS nanowire/tapered microfiber probe and traditional tapered microfiber probe.

    样品AFM/
    μm
    锥形光纤探针 CdS纳米线/锥形光纤探针
    θ = 23° θ = 23° θ = 38°
    测量结果/μm误差测量结果/μm误差测量结果/μm误差
    S15.584.5318.82% 5.196.99% 4.7814.33%
    S22.613.2323.75%2.807.28%2.9914.56%
    S32.763.2417.40%2.894.71%3.9442.75%
    下载: 导出CSV
  • [1]

    Trautman J K, Macklin J J, Brus L E, Betzig E 1994 Nature 369 40Google Scholar

    [2]

    Betzig E, Trautman J K 1992 Science 257 189Google Scholar

    [3]

    Ruckstuhl T, Verdes D, Winterflood C M, Seeger S 2011 Opt. Express 19 6836Google Scholar

    [4]

    胡睿璇, 潘冰洋. 杨玉龙, 张伟华 2017 物理学报 66 144209Google Scholar

    Hu R X, Pan B Y, Yang Y L, Zhang W H 2017 Acta. Phys. Sin. 66 144209Google Scholar

    [5]

    Rayleigh L 1896 On the Theory of Optical Images, with Special Reference to the Microscope (Cambridge: Cambridge University Press) p167

    [6]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468Google Scholar

    [7]

    Hermann R J, Gordon M J 2018 Annu. Rev. Chem. Biomol. 9 365Google Scholar

    [8]

    Novotny L, Stranick J S 2006 Annu. Rev. Phys. Chem. 57 303Google Scholar

    [9]

    Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V 2001 J. Microsc. 202 72Google Scholar

    [10]

    Bharadwaj P, Novotny L 2007 Opt. Express 15 14266Google Scholar

    [11]

    Kim Z H, Leone S R 2006 J. Phys. Chem. B 110 19804Google Scholar

    [12]

    Sun L, Bai B, Meng X, Cui T, Shang G, Wang J 2018 Opt. Express 26 24637Google Scholar

    [13]

    Novotny L, Hulst N V 2011 Nat. Photonics 5 83Google Scholar

    [14]

    Palomba S, Novotny L 2009 Nano Lett. 9 3801Google Scholar

    [15]

    Hoeppener C, Lapin Z J, Bharadwaj P, Novotny L 2012 Phys. Rev. Lett. 109 017402Google Scholar

    [16]

    Pan B, Yang Y, Bian J, Hu X, Zhang W 2019 Opt. Commun. 445 273Google Scholar

    [17]

    Wei B, Melli M, Caselli N, et al. 2012 Science 338 1317Google Scholar

    [18]

    伍晓芹, 王依霈, 童利民 2015 物理 44 356Google Scholar

    Wu X Q, Wang Y P, Tong L M 2015 Physics 44 356Google Scholar

    [19]

    谷付星 2012 博士学位论文 (杭州: 浙江大学)

    Gu F X 2012 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [20]

    Kim S, Yu N, Ma X, Zhu Y Z, Liu Q S, Liu M, Yan R X 2019 Nat. Photonics 13 636Google Scholar

    [21]

    Wu Y K, Liu X J, Qi X Z, Lu L, Guo G P, Guo G C, Ren X F 2021 Appl. Phys. Lett. 118 104002Google Scholar

    [22]

    Huang K, Yang S Tong L 2007 Appl. Opt. 46 1429Google Scholar

    [23]

    Marcatili E 1986 IEEE J. Quantum Electron. 22 988Google Scholar

    [24]

    Liao F, Wang Y, Peng T, Peng J, Gu Z Q, Yu H K, Chen T, Yu J X, Gu F X 2018 Adv. Opt. Mater. 6 1701012Google Scholar

    [25]

    Linghu S Y, Gu Z Q, Lu J S, et al. 2021 Nat. Commun. 12 385

    [26]

    王国军, 吴世法, 李旭峰, 李睿, 段建民, 潘石 2010 物理学报 59 192Google Scholar

    Wang G J, Wu S F, Li X F, Li R, Duan J M, Pan S 2010 Acta. Phys. Sin. 59 192Google Scholar

    [27]

    Zhang M Q, Wang J, Tian Q 2013 Chin. Phys. B 22 044202Google Scholar

    [28]

    王佳, 武晓宇, 孙琳, 周炳琨 2016 扫描近场光学显微镜和纳米光学测量 (北京: 科学出版社) 第167, 247页

    Wang J, Wu X Y, Sun L, Zhou B K 2016 Scanning Near-Field Optical Microscope and Nano-Optical Measurement (Beijing: Science Press) pp167, 247 (in Chinese)

    [29]

    石顺祥, 王学恩, 马琳 2014 物理光学与应用光学 (西安: 西安电子科技大学出版社) 第31, 77页

    Shi S X, Wang X E, Ma L 2014 Physical Optics and Applied Optics (Xi’an: Xidian University Press) pp31, 77 (in Chinese)

    [30]

    Yu J X, Liu F, Gu Z Q, Gu F X, Zhuang S L 2018 Opt. Express 26 6880Google Scholar

  • [1] 周怡汐, 李志鹏, 陈佳宁. 基于近场光学成像技术的极化激元学研究进展. 物理学报, 2024, 73(8): 080701. doi: 10.7498/aps.73.20232001
    [2] 任立庆, 杨强, 姬超燃, 池娇, 胡云, 魏迎春, 许金友. 基于二次谐波产生光谱与显微成像的CdS纳米线空间取向研究. 物理学报, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 张倬铖, 王月莹, 张晓秋艳, 张天宇, 许星星, 赵陶, 宫玉彬, 魏彦玉, 胡旻. 太赫兹散射式扫描近场光学显微镜中探针与样品互作用及其影响探究. 物理学报, 2021, 70(24): 248703. doi: 10.7498/aps.70.20211715
    [5] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211810
    [6] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [7] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨. 氮化铌纳米线光学特性. 物理学报, 2018, 67(24): 248501. doi: 10.7498/aps.67.20181646
    [8] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [9] 安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏. 光学微操纵过程的轴平面显微成像技术. 物理学报, 2017, 66(1): 010702. doi: 10.7498/aps.66.010702
    [10] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [11] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [12] 许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力. 基于光导微探针的近场/远场可扫描太赫兹光谱技术. 物理学报, 2016, 65(3): 036803. doi: 10.7498/aps.65.036803
    [13] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器. 物理学报, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [14] 程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江. 基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究. 物理学报, 2013, 62(23): 237805. doi: 10.7498/aps.62.237805
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 莫丹, 陈艳峰, 段敬来, 侯明东, 刘杰, 孙友梅, 薛智浩, 姚会军, 张苓. 云母模板中Cu纳米线的制备及其光学性质研究. 物理学报, 2009, 58(4): 2599-2604. doi: 10.7498/aps.58.2599
    [17] 王 笑, 潘安练, 刘 丹, 白永强, 张朝晖, 邹炳锁, 朱 星. 近场光学显微镜研究CdS0.65Se0.35纳米带空间分辨光致荧光谱. 物理学报, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [18] 张立源, 李永贵, 王潜. 扫描近场红外显微镜光纤探针的腐蚀制法. 物理学报, 2001, 50(12): 2322-2326. doi: 10.7498/aps.50.2322
    [19] 周庆, 朱星, 李宏福. 近场光学中光纤探针的光强分布. 物理学报, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [20] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
计量
  • 文章访问数:  5971
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-10-29
  • 上网日期:  2022-02-17
  • 刊出日期:  2022-02-20

/

返回文章
返回