搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子偶素在OMC/SBA-15, OMC@SBA-15及CuO@SBA-15催化剂中的化学猝灭

李重阳 赵宾 张俊伟

引用本文:
Citation:

电子偶素在OMC/SBA-15, OMC@SBA-15及CuO@SBA-15催化剂中的化学猝灭

李重阳, 赵宾, 张俊伟

Chemical quenching of positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 catalysts

Li Chong-Yang, Zhao Bin, Zhang Jun-Wei
PDF
HTML
导出引用
  • 以P123为结构导向剂、TEOS为硅源制备了有序介孔二氧化硅SBA-15, 并以此为模板制备了有序介孔碳(OMC). 小角X射线衍射、高分辨透射电子显微镜和N2吸附/脱附等测试结果均证实SBA-15与OMC具有高度有序的孔结构、相对较高的比表面积, 且孔洞平均尺寸分别约为7.5 nm和3.3 nm. 分别采用固相反应法和浸渍填充法制备了OMC/SBA-15复合材料和OMC@SBA-15及CuO@SBA-15复合材料. 随着OMC和CuO质量分数的增大, 3种复合材料中o-Ps寿命$ {\tau }_{4} $和其强度$ {I}_{4} $均减小. o-Ps湮没率$ {\lambda }_{4} $随OMC和CuO质量分数的变化可用一条或两条直线很好地拟合, OMC/SBA-15, OMC@SBA-15及CuO@SBA-15复合材料中反应速率常数$ k $分别为$(2.39\pm 0.44)\times {10}^{7}~{\mathrm{s}}^{-1}$/$(6.65\pm 0.94)\times {10}^{6}~{\mathrm{s}}^{-1}$, $(2.28\pm 0.19)\times {10}^{7}~{\mathrm{s}}^{-1}$$(8.76\pm 0.47)\times {10}^{6}~{\mathrm{s}}^{-1}$. 因此, 3种复合材料中$ {\tau }_{4} $$ {I}_{4} $降低是由于电子偶素与碳、铜元素在介孔内或孔表面发生了化学猝灭和禁止效应. 同时, 电子偶素也是一种检测多孔材料中孔隙结构的有效探针.
    Owing to highly ordered two-dimensional hexagonal structure, large surface area, variable pore size, high thermal stability and especially the electron delocalization energy determined by its frame structure, SBA-15 catalysts have received more and more researchers’ attention. By using the structure-directing agent of P123 and the silicon source of TEOS, we synthesize ordered mesoporous silica SBA-15. At the same time, ordered mesoporous carbon OMC is succefully synthesized with the template of SBA-15. The small angle X-ray diffraction, high resolution transmission electron microscopy and N2 adsorption-desorption measurements are conducted to verify the highly ordered pore structure and relatively high specific surface area of SBA-15 and OMC, and their average pore radius are about 7.5 nm and 3.3 nm, respectively. Positron lifetime spectrum of SBA-15 catalyst is composed of two longer lifetimes and two shorter lifetimes: two longer lifetimes $ {\tau }_{3} $ and $ {\tau }_{4} $ are the annihilation in micropore and large pore of positronium (Ps), are 7.5 ns and 106 ns. However, there is nearly no longer lifetime component in OMC, which indicates that there might exist the quenching or inhibiting of positronium by carbon material. To verify this guess, we synthesize the catalysts of OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 by the solid state reaction and the impregnation filling method. With the increasing of OMC and CuO content, both the o-Ps lifetime $ {\tau }_{4} $ and its intensity $ {I}_{4} $ of these three compounds decrease. The annihilation rate of o-Ps lifetime varying with OMC and CuO content can be better fitted by one or two straight lines, The values of reaction rate constant K in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 are $(2.39\pm $$ 0.44)\times {10}^{7}~{\mathrm{s}}^{-1}$/$(6.65\pm 0.94)\times {10}^{6}~{\mathrm{s}}^{-1}$, $(2.28\pm 0.19)\times {10}^{7}~{\mathrm{s}}^{-1}$, and $(8.76\pm 0.47)\times {10}^{6}~{\mathrm{s}}^{-1},$ respectively. Therefore, our results indicate that there are quenching effect and inhibition effect among the carbon, the CuO and the positronium, which lead $ {\tau }_{4} $ and $ {I}_{4} $to decrease, and positronium is also a probe for detecting the pore structure of porous material.
      通信作者: 李重阳, lichongyang@ncwu.edu.cn ; 赵宾, zhaobin@zut.edu.cn
    • 基金项目: 国家自然科学基金青年基金(批准号: 11805295, 11905063)资助的课题.
      Corresponding author: Li Chong-Yang, lichongyang@ncwu.edu.cn ; Zhao Bin, zhaobin@zut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China for Youth Fund (Grant Nos. 11805295, 11905063).
    [1]

    Veisi H, Ozturk T, Karmakar B, Tamoradi T, Hemmati S 2020 Carbohydr. Polym. 235 115966Google Scholar

    [2]

    Veisi H, Tamoradi T, Karmakar B, Hemmati S 2020 J. Phys. Chem. Solids 138 109256Google Scholar

    [3]

    Tamoradi T, Daraie M, Heravi M M, Karmakar B 2020 New J. Chem. 44 11049Google Scholar

    [4]

    Tamoradi T, Daraie M, Heravi M M 2020 Appl. Organomet Chem. 34 5538Google Scholar

    [5]

    Rehman F, Volpe P L O, Airoldi C 2014 J. Environ. Manage. 133 135Google Scholar

    [6]

    Xu Y, Hu E, Xu D, Guo Q 2021 Sep. Purif. Technol. 274 119081Google Scholar

    [7]

    Cao T, Wang C, Zhou Z, Liu L, Xu S, Song H, Lin W, Xu Z 2021 Appl. Surf. Sci. 552 149487Google Scholar

    [8]

    El-Denglawey A, Mubarak M F, Selim H 2021 Arab. J. Sci. Eng. 47 455Google Scholar

    [9]

    Yu N Y, Wu K, Tao L 2021 Chemosphere 276 130112Google Scholar

    [10]

    Kumaravel S, Thiripuranthagan S, Vembuli T, Erusappan E, Durai M, Sureshkumar T, Durai M 2021 Optik 235 166599Google Scholar

    [11]

    Chang Q, Yang S, Xue C, Li N, Wang Y, Li Y, Wang H, Yang J, Hu S 2019 Nanoscale 11 7247Google Scholar

    [12]

    Yang H C, Lin H Y, Chien Y S, Wu J C S, Wu H H 2009 Catal. Lett. 131 381Google Scholar

    [13]

    He J H, Xie T P, Luo T H, Xu Q, Ye F, An J B, Yang J, Wang J K 2021 Ecotox. Environ. Safe. 216 112189Google Scholar

    [14]

    Poonia E, Duhan S, Kumar K, Kumar A, Jakhar S, Tomer V K 2018 J. Porous Ma. 26 553Google Scholar

    [15]

    Sharma S K, Sudarshan K, Sen D, Pujari P K 2019 J. Solid State Chem. 274 10Google Scholar

    [16]

    Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron & Positronium Chemistry (Singapore: World Scientific Publishing)

    [17]

    Sing K S, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J 1985 Pure Appl. Chem. 57 603Google Scholar

    [18]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [19]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [20]

    Hyodo T, Nakayama T, Saito H, Saito F, Wada K 2009 Phys. Status Solidi (c) 6 2497Google Scholar

    [21]

    Varisov A Z, Grafutin V I, Zaluzhnyi A G, Ilyukhina O V, Myasishcheva G G, Prokop'ev E P, Timoshenkov S P, Funtikov Y V 2008 J. Surf. Ingestig. 2 959Google Scholar

    [22]

    Kim T W, Ryoo R, Gierszal K P, Jaroniec M, Solovyov L A, Sakamoto Y, Terasaki O 2005 J. Mater. Chem. 15 1560Google Scholar

    [23]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [24]

    Sagara A, Yabe H, Chen X, Vereecken P M, Uedono A 2020 Microporous Mesoporous Mater. 295 109964Google Scholar

    [25]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky Galen D 1998 Science 279 548Google Scholar

    [26]

    Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O 2000 J. Am. Chem. Soc. 122 10712Google Scholar

    [27]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [28]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [29]

    Davis M E 2002 Nature 417 813Google Scholar

    [30]

    Paulin P R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [31]

    Dull T L, Frieze W E, Gidley D W, 2001 J. Phys. Chem. B 105 4657Google Scholar

    [32]

    Goworek T, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [33]

    Zhang H J, Chen Z Q, Wang S J 2012 J. Chem. Phys. 136 034701Google Scholar

    [34]

    Saito H, Hyodo T 1999 Phys. Rev. B 60 11070Google Scholar

    [35]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659Google Scholar

    [36]

    Sudarshan K, Patil P N, Goswami A, Pillai K T, Pujari P K 2009 Phys. Status Solidi (c) 6 2552Google Scholar

  • 图 1  有序介孔碳和其模板二氧化硅的小角X射线衍射谱图

    Fig. 1.  Small angle X-ray diffraction measurement of synthesized ordered mesoporous carbon and its template silica.

    图 2  有序介孔碳和其模板二氧化硅的扫描电子显微镜照片及介孔碳的电子衍射谱

    Fig. 2.  Scanning electron microscopy and electron diffraction spectroscopy measurement of synthesized ordered mesoporous carbon and its template silica.

    图 3  有序介孔碳和其模板二氧化硅的高分辨透射电子显微镜图

    Fig. 3.  High resolution transmission electron microscopy measurement of synthesized ordered mesoporous carbon and its template silica.

    图 4  有序介孔碳、其模板二氧化硅及CuO质量分数分别为1%, 1.5%, 2%的CuO@SBA-15复合材料的N2吸附/脱附等温线及相应的孔径分布(STP代表标准状况)

    Fig. 4.  N2 adsorption and desorption measurement of synthesized ordered mesoporous carbon, its template silica and CuO@SBA-15 composite materials with the CuO weight content of 1%, 1.5%, 2% (STP, standard temperature and pressure)

    图 5  二氧化硅模板和有序介孔碳经归一化峰处理后的正电子湮没寿命谱图, 其中每道时间值为50.3 ps

    Fig. 5.  Positron annihilation lifetime spectrum of the normalized peak of synthesized ordered mesoporous carbon and its template silica, the time value of each channel (time/ch) is 50.3 ps.

    图 6  不同CuO质量分数的CuO@SBA-15复合材料中o-Ps寿命$ {\tau }_{3} $, $ {\tau }_{4} $及其强度$ {I}_{3} $, $ {I}_{4} $的变化

    Fig. 6.  Variation of $ {\tau }_{3} $, $ {\tau }_{4} $, $ {I}_{3} $, $ {I}_{4} $ with the weight content of CuO in CuO@SBA-15 components.

    图 7  不同CuO质量分数的CuO@SBA-15复合材料中$ S $参数的变化

    Fig. 7.  Variation of $ S $ parameter with the weight content of CuO in CuO@SBA-15 components.

    图 8  不同CuO质量分数的CuO@SBA-15复合材料中$ {\lambda }_{4} $($ 1/{\tau }_{4} $)的变化

    Fig. 8.  Variation of $ {\lambda }_{4} $($ 1/{\tau }_{4}) $ with the weight content of CuO in CuO@SBA-15 components.

    图 9  不同OMC质量分数的OMC/ SBA-15, OMC@SBA-15复合材料中o-Ps寿命$ {\tau }_{3} $, $ {\tau }_{4} $, ${\tau }_{3}'$, ${\tau }_{4}'$的变化, 其中$ {\tau }_{3} $, $ {\tau }_{4} $为浸渍填充法制备OMC@SBA-15复合材料的测试结果, ${\tau }_{3}'$, ${\tau }_{4}'$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Fig. 9.  Variation of $ {\tau }_{3} $, $ {\tau }_{4} $, ${\tau }_{3}'$, ${\tau }_{4}'$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. $ {\tau }_{3} $, $ {\tau }_{4} $ for the results of OMC@SBA-15 component synthesized by impregnation method, ${\tau }_{3}'$, ${\tau }_{4}'$ for that of OMC/SBA-15 component synthesized by solid state method.

    图 10  不同OMC质量分数的OMC/SBA-15, OMC@SBA-15复合材料中o-Ps寿命强度$ {I}_{3} $, $ {I}_{4} $, ${I}_{3}'$, ${I}_{4}'$的变化, 其中$ {I}_{3} $, $ {I}_{4} $为浸渍填充法制备OMC@SBA-15复合材料的测试结果, ${I}_{3}'$, ${I}_{4}'$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Fig. 10.  Variation of the intensity of o-Ps lifetime $ {I}_{3} $, $ {I}_{4} $, ${I}_{3}'$, ${I}_{4}'$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. $ {I}_{3} $, $ {I}_{4} $ for the results of OMC@SBA-15 component synthesized by impregnation method, ${I}_{3}'$, ${I}_{4}'$ for that of OMC/SBA-15 component synthesized by solid state method.

    图 11  不同OMC质量分数的OMC/SBA-15, OMC@SBA-15复合材料中$ {\lambda }_{4} $($ 1/{\tau }_{4} $), ${\lambda }_{4}'\,(1/{\tau }_{4}')$的变化, 其中$ {\lambda }_{4} $($ 1/{\tau }_{4} $)为浸渍填充法制备OMC@SBA-15复合材料的测试结果, 而${{\lambda }_{4}'\, (1/{\tau }_{4}')}$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Fig. 11.  Variation of the intensity of o-Ps lifetime ${\lambda }_{4}\,(1/{\tau }_{4})$, ${\lambda }_{4}'\, (1/{\tau }_{4}')$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. ${\lambda }_{4}\,(1/{\tau }_{4})$ or the results of OMC@SBA-15 component synthesized by impregnation method, ${\lambda }_{4}'\, (1/{\tau }_{4}')$ for that of OMC/SBA-15 component synthesized by solid state method.

    图 12  不同OMC质量分数的OMC/SBA-15, OMC@SBA-15复合材料中$ S $${S}{'}$参数的变化, 其中$ S $为浸渍填充法制备OMC@SBA-15复合材料的测试结果, 而${S}{'}$为固相混合法制备OMC/SBA-15复合材料的测试结果

    Fig. 12.  Variation of the intensity of o-Ps lifetime $ S $, ${S}{'}$ parameter with the weight content of OMC in OMC/SBA-15 and OMC@SBA-15 components. $ S $ or the results of OMC@SBA-15 synthesized by impregnation method, ${S}{'}$ for that of OMC/SBA-15 synthesized by solid state method.

  • [1]

    Veisi H, Ozturk T, Karmakar B, Tamoradi T, Hemmati S 2020 Carbohydr. Polym. 235 115966Google Scholar

    [2]

    Veisi H, Tamoradi T, Karmakar B, Hemmati S 2020 J. Phys. Chem. Solids 138 109256Google Scholar

    [3]

    Tamoradi T, Daraie M, Heravi M M, Karmakar B 2020 New J. Chem. 44 11049Google Scholar

    [4]

    Tamoradi T, Daraie M, Heravi M M 2020 Appl. Organomet Chem. 34 5538Google Scholar

    [5]

    Rehman F, Volpe P L O, Airoldi C 2014 J. Environ. Manage. 133 135Google Scholar

    [6]

    Xu Y, Hu E, Xu D, Guo Q 2021 Sep. Purif. Technol. 274 119081Google Scholar

    [7]

    Cao T, Wang C, Zhou Z, Liu L, Xu S, Song H, Lin W, Xu Z 2021 Appl. Surf. Sci. 552 149487Google Scholar

    [8]

    El-Denglawey A, Mubarak M F, Selim H 2021 Arab. J. Sci. Eng. 47 455Google Scholar

    [9]

    Yu N Y, Wu K, Tao L 2021 Chemosphere 276 130112Google Scholar

    [10]

    Kumaravel S, Thiripuranthagan S, Vembuli T, Erusappan E, Durai M, Sureshkumar T, Durai M 2021 Optik 235 166599Google Scholar

    [11]

    Chang Q, Yang S, Xue C, Li N, Wang Y, Li Y, Wang H, Yang J, Hu S 2019 Nanoscale 11 7247Google Scholar

    [12]

    Yang H C, Lin H Y, Chien Y S, Wu J C S, Wu H H 2009 Catal. Lett. 131 381Google Scholar

    [13]

    He J H, Xie T P, Luo T H, Xu Q, Ye F, An J B, Yang J, Wang J K 2021 Ecotox. Environ. Safe. 216 112189Google Scholar

    [14]

    Poonia E, Duhan S, Kumar K, Kumar A, Jakhar S, Tomer V K 2018 J. Porous Ma. 26 553Google Scholar

    [15]

    Sharma S K, Sudarshan K, Sen D, Pujari P K 2019 J. Solid State Chem. 274 10Google Scholar

    [16]

    Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron & Positronium Chemistry (Singapore: World Scientific Publishing)

    [17]

    Sing K S, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J 1985 Pure Appl. Chem. 57 603Google Scholar

    [18]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [19]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [20]

    Hyodo T, Nakayama T, Saito H, Saito F, Wada K 2009 Phys. Status Solidi (c) 6 2497Google Scholar

    [21]

    Varisov A Z, Grafutin V I, Zaluzhnyi A G, Ilyukhina O V, Myasishcheva G G, Prokop'ev E P, Timoshenkov S P, Funtikov Y V 2008 J. Surf. Ingestig. 2 959Google Scholar

    [22]

    Kim T W, Ryoo R, Gierszal K P, Jaroniec M, Solovyov L A, Sakamoto Y, Terasaki O 2005 J. Mater. Chem. 15 1560Google Scholar

    [23]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [24]

    Sagara A, Yabe H, Chen X, Vereecken P M, Uedono A 2020 Microporous Mesoporous Mater. 295 109964Google Scholar

    [25]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky Galen D 1998 Science 279 548Google Scholar

    [26]

    Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O 2000 J. Am. Chem. Soc. 122 10712Google Scholar

    [27]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [28]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [29]

    Davis M E 2002 Nature 417 813Google Scholar

    [30]

    Paulin P R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [31]

    Dull T L, Frieze W E, Gidley D W, 2001 J. Phys. Chem. B 105 4657Google Scholar

    [32]

    Goworek T, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [33]

    Zhang H J, Chen Z Q, Wang S J 2012 J. Chem. Phys. 136 034701Google Scholar

    [34]

    Saito H, Hyodo T 1999 Phys. Rev. B 60 11070Google Scholar

    [35]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659Google Scholar

    [36]

    Sudarshan K, Patil P N, Goswami A, Pillai K T, Pujari P K 2009 Phys. Status Solidi (c) 6 2552Google Scholar

  • [1] 叶凤娇, 张鹏, 张红强, 况鹏, 于润升, 王宝义, 曹兴忠. 正电子湮没符合多普勒展宽技术的材料学研究进展. 物理学报, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] 尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义. 聚乙烯亚胺改性介孔二氧化硅SBA-15微观结构的小角X射线散射及正电子湮没谱学研究. 物理学报, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [3] 李重阳, 李梦德, 汪美, 李涛, 刘建党, 叶邦角, 陈志权. ZIFs纳米晶体中电子偶素的自旋转换. 物理学报, 2022, 71(15): 157801. doi: 10.7498/aps.71.20220305
    [4] 贺玮迪, 张培源, 刘翔, 田雪芬, 付馨葛, 邓爱红. 用正电子湮没技术研究H/He中性束辐照钨钾合金中缺陷的演化. 物理学报, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [5] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] 张培源, 邓爱红, 田雪芬, 唐军. 利用正电子湮没技术研究钾掺杂钨合金中的缺陷. 物理学报, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [7] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [8] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角. 非铁电压电复合陶瓷SrTiO3-Bi12TiO20 (ST-BT) 的正电子湮没谱学研究. 物理学报, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [9] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [10] 许红霞, 郝颖萍, 韩荣典, 翁惠民, 杜淮江, 叶邦角. 纳米Fe3 O4 颗粒的正电子湮没谱学研究. 物理学报, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [11] 康婷霞, 毕翱翔, 朱俊. MoO3在多孔γ-Al2 O3中固熔分散的研究. 物理学报, 2011, 60(6): 067805. doi: 10.7498/aps.60.067805
    [12] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] 李卓昕, 王丹妮, 王宝义, 薛德胜, 魏龙, 秦秀波. 不同气氛下多孔硅中电子偶素湮没行为研究. 物理学报, 2010, 59(9): 6647-6652. doi: 10.7498/aps.59.6647
    [14] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征. 物理学报, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [15] 郝延明, 严达利, 傅斌, 王立群, 郝小鹏, 王宝义. Tb2AlFe16-xMnx化合物的结构、磁性及正电子湮没谱研究. 物理学报, 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [16] 朱 俊, 王莉莉, 马 莉, 王少阶. 用正电子研究NaCl在NaY沸石上的固溶过程. 物理学报, 2003, 52(11): 2929-2933. doi: 10.7498/aps.52.2929
    [17] 何元金, 马兴坤, 桂治轮, 李龙土. 用正电子湮没研究钙钛矿结构压电陶瓷中的点缺陷. 物理学报, 1998, 47(1): 146-153. doi: 10.7498/aps.47.146
    [18] 马莉, 陈志权, 王少阶, 彭治林, 罗锡辉. 用正电子湮没技术研究USY沸石的“二次孔”结构. 物理学报, 1997, 46(11): 2267-2273. doi: 10.7498/aps.46.2267
    [19] 王波, 彭治林, 吴弯, 李世清, 王少阶, 刘皓, 谢洪泉. 导电聚合物聚醚聚氨酯的结构与导电性能的正电子湮没研究. 物理学报, 1996, 45(1): 153-160. doi: 10.7498/aps.45.153
    [20] 杨洪宁, 林步镇, 方俊鑫. 准正电子偶素弛豫机制的研究. 物理学报, 1986, 35(6): 697-703. doi: 10.7498/aps.35.697
计量
  • 文章访问数:  4358
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-11-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回