搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大掠射角海底反射特性的深海地声参数反演

黎章龙 胡长青 赵梅 秦继兴 李整林 杨雪峰

引用本文:
Citation:

基于大掠射角海底反射特性的深海地声参数反演

黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰

Inversion of deep water geoacoustic parameters based on the seabed reflection characteristics of large grazing angles

Li Zhang-Long, Hu Chang-Qing, Zhao Mei, Qin Ji-Xing, Li Zheng-Lin, Yang Xue-Feng
PDF
HTML
导出引用
  • 海底声学参数的获取对于海洋声学研究有着重要意义. 通过推导分层吸收介质下的海底反射系数, 理论分析了大掠射角条件下吸收系数对海底反射系数的影响. 海底反射系数随频率振荡过程中, 将其等于海水-沉积层界面反射系数模时所对应的频点定义为1/4振荡周期频率. 在该频率下, 沉积层吸收系数与基底地声参数的耦合程度小于其他频点. 本文基于大掠射角下的海底反射特性, 提出一种深海地声参数分步反演方法. 首先, 利用相关法提取得到海底反射系数的干涉周期, 利用干涉周期反演了沉积层声速和厚度. 声速的反演结果结合Hamilton经验公式反演密度. 第二步, 通过结合基底声速的穷举边界, 给出沉积层吸收系数的假设值, 利用1/4振荡周期频率下的海底反射系数对基底声速进行一维反演. 最后利用半波层频率下的海底反射系数对沉积层吸收系数进行一维反演. 大掠射角海底反射特性结合分步反演, 实现了基底声速和沉积层吸收系数一定程度的解耦合. 实验结果表明, 在大掠射角测量条件下, 该方法反演的地声参数可有效应用在一定范围内的传播损失预报.
    The acquisition of geoacoustic parameters is of great significance in studying ocean acoustics. On the basis of deducing the seabed reflection coefficient under the layered absorbing medium, the influence of the absorption coefficient on the seabed reflection coefficient under the condition of large grazing angles is analyzed. The seabed reflection coefficient oscillates at a frequency. When it is equal to the reflection coefficient of the contact interface between seawater and sediment, the corresponding frequency point is defined as the 1/4 oscillation period frequency. At this frequency, the coupling degree between absorption coefficient of sedimentary layer and substrate geoacoustic parameters is less than those at other frequencies. In this paper, a stepwise optimization inversion method for deep water geoacoustic parameters is proposed based on the seabed reflection characteristics of large grazing angles. Firstly, the interference period of the seabed reflection coefficient is extracted by the correlation method, and the sound speed and thickness of the deposited layer are inverted by the interference period. The density is obtained from the inversion result of sound speed combined with Hamilton empirical formula. Secondly, the value of the absorption coefficient of the sedimentary layer is calculated by combining the search boundary of the substrate sound speed. The one-dimensional inversion of the substrate sound speed is realized by using the substrate reflection coefficient at 1/4 oscillation period frequency. Finally, the one-dimensional inversion of the absorption coefficient of the sedimentary layer is realized by using the seabed reflection coefficient at a half-wave layer frequency. The seabed reflection characteristics of large glancing angles are combined with stepwise inversion to reduce the coupling degree of the substrate sound speed and the absorption coefficient of the sedimentary layer. Experimental results show that the geoacoustic parameters retrieved by this method can be effectively applied to the prediction of propagation loss in a certain range under the condition of large grazing angle measurement.
      通信作者: 赵梅, zhaomei@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12004414, 11874061)资助的课题.
      Corresponding author: Zhao Mei, zhaomei@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004414, 11874061).
    [1]

    杨坤德, 马远良 2009 物理学报 58 1798Google Scholar

    Yang K, Ma Y L 2009 Acta Phys. Sin. 58 1798Google Scholar

    [2]

    黎雪刚, 杨坤德, 张同伟, 等 2009 物理学报 58 7741Google Scholar

    Li X G, Yang K D, Zhang T W, et al. 2009 Acta Phys. Sin. 58 7741Google Scholar

    [3]

    周天, 李海森, 朱建军, 等 2014 物理学报 63 084302Google Scholar

    Zhou T, Li H S, Zhu J J, et al. 2014 Acta Phys. Sin. 63 084302Google Scholar

    [4]

    李赫, 郭新毅, 马力 2019 物理学报 63 214303Google Scholar

    Li H, Guo X Y, Ma L 2019 Acta Phys. Sin. 63 214303Google Scholar

    [5]

    Belcourt J, Holland C W, Dosso S E, et al. 2020 IEEE J. Oceanic Eng. 45 69Google Scholar

    [6]

    陈勃, 赵梅, 胡长青, Zygmunt Klusek 2018 声学学报 43 298Google Scholar

    Chen B, Zhao M, Hu C Q, Zygmunt K 2018 Acta Acoustica 43 298Google Scholar

    [7]

    Chiu L, Chang A, Chen H H, et al. 2020 Cont. Shelf Res. 201 104Google Scholar

    [8]

    徐丽亚, 杨坤德 2020 声学技术 39 1Google Scholar

    Xu L Y, Yang K D 2020 Technical Acoustics 39 1Google Scholar

    [9]

    Quijano J E, Dosso S E, Dettmer J, et al. 2013 J. Acoust. Soc. Am. 133 EL47Google Scholar

    [10]

    Qin J X, Katsnelson B, Godin O, Li Z L 2017 Chin. Phys. Lett. 34 094301Google Scholar

    [11]

    江鹏飞, 林建恒, 孙军平, 等 2019 物理学报 66 014306Google Scholar

    Jiang P G, Lin J H, Sun J P, et al. 2019 Acta Phys. Sin. 66 014306Google Scholar

    [12]

    薄连坤, 罗来源, 熊瑾煜 2018 声学学报 43 6Google Scholar

    Bao L K, Luo L Y, Xiong J Y 2018 Acta Acoustica 43 6Google Scholar

    [13]

    Barclay D R, Bevans D A, Buckingham M J 2019 IEEE J. Oceanic Eng. 99 1Google Scholar

    [14]

    李风华, 张仁和 2000 声学学报 4 297Google Scholar

    Li F H, Zhang R H 2000 Acta Acoustica 4 297Google Scholar

    [15]

    张学磊, 李整林, 黄晓砥 2009 声学学报 1 54Google Scholar

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 1 54Google Scholar

    [16]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 70Google Scholar

    [17]

    李梦竹, 李整林, 周纪浔 2019 物理学报 68 094301Google Scholar

    Li M Z, Li Z L, Zhou J X 2019 Acta Phys. Sin. 68 094301Google Scholar

    [18]

    李梦竹, 李整林, 李倩倩 2019 声学学报 44 321Google Scholar

    Li M Z, Li Z L, Li Q Q 2019 Acta Acoustica 44 321Google Scholar

    [19]

    Fialkowski L T, Lingevitch J F, Perkins J S, et al. 2003 IEEE J. Oceanic Eng. 28 370Google Scholar

    [20]

    Jiang Y M, Chapman N R, Badiey M 2007 J. Acoust. Soc. Am. 121 1879Google Scholar

    [21]

    布列霍夫斯基赫 L 著 (杨训仁 译) 1985 分层介质中的波 (北京: 科学出版社) 第10—16页

    Л. М. Бреховских L (translated by Yang X R) 1985 Waves In Layered Medium (Beijing: Science Press) pp10–16 (in Chinese)

    [22]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891Google Scholar

    [23]

    布列霍夫斯基赫 L著 (中国海洋大学, 中国科学院声学研究所 译) 1983 海洋声学 (北京: 科学出版社) 第309—314页

    Л. М. Бреховских L (translated by OUC & IACAS) 1983 Ocean Acoustic (Beijing: Science Press) pp309–314 (in Chinese)

  • 图 1  两层海底模型的反射

    Fig. 1.  Reflection of the two-layer seabed model.

    图 2  各项参数随频率和沉积层吸收系数的变化 (a) 海水-沉积层界面反射系数相位; (b) 沉积层-基底界面反射系数相位; (c) 垂直相移实部

    Fig. 2.  Various parameters vary with frequency and the absorption coefficient of the sedimentary layer: (a) Phase of the reflection coefficient of the seawater-sedimentary layer interface; (b) phase of the reflection coefficient of the sedimentary layer-substrate interface; (c) real part of the vertical phase shift.

    图 3  各项参数随频率和沉积层吸收系数的变化 (a) 海水-沉积层界面反射系数模; (b)沉积层-基底界面反射系数模; (c) 衰减项

    Fig. 3.  Various parameters vary with frequency and the absorption coefficient of the sediment layer: (a) Reflection coefficient of the seawater-sedimentary layer interface; (b) reflection coefficient of the sedimentary layer- substrate interface; (c) attenuation term.

    图 4  海底反射系数模随频率和沉积层吸收系数的变化

    Fig. 4.  Seabed reflectance varies with frequency and absorption coefficient of sedimentary layer.

    图 5  不同频点下海底反射系数随各地声参数的变化 (a) 沉积层吸收系数; (b) 基底声速; (c) 基底密度; (d) 基底吸收系数

    Fig. 5.  Seabed reflectance coefficient varies with the various GA parameters at different frequency points: (a) Absorption coefficient of sedimentary layer; (b) sound speed of substrate; (c) density of substrate; (d) absorption coefficient of substrate.

    图 6  反演流程图

    Fig. 6.  Flow chart of inversion.

    图 7  实验作业方式示意图

    Fig. 7.  Schematic diagram of experimental work.

    图 8  实验海区声速剖面

    Fig. 8.  Sound speed profile of the experimental sea area.

    图 9  声源深度200 m, 接收距离1.7 km的多途到达时延

    Fig. 9.  Multi-path arrival delay at source depth of 200 m and receiving distance of 1.7 km.

    图 10  声源深度200 m, 接收距离1.7 km, 接收深度800 m的多途信号

    Fig. 10.  Multi-path signal under sound source depth of 200 m, receiving distance of 1.7 km and receiving depth of 800 m.

    图 11  (22)式提取的海底反射系数干涉周期

    Fig. 11.  Interference period of seabed reflection coefficient extracted by Eq. (22).

    图 12  沉积层声速和厚度反演结果

    Fig. 12.  Inversion results of sound speed and thickness of sedimentary layer.

    图 13  提取海底反射系数的1/4振荡周期频率和半波层频率

    Fig. 13.  1/4 oscillation period frequency and the half-wave layer frequency of seabed reflection coefficient.

    图 14  不同接收掠射角下对应的沉积层吸收系数平均值

    Fig. 14.  Average value of the absorption coefficient of the sedimentary layer under different receiving grazing angle.

    图 15  基底声速反演结果

    Fig. 15.  Inversion result of the substrate sound speed.

    图 16  沉积层吸收系数反演结果

    Fig. 16.  Inversion result of the sedimentary layer absorption coefficient.

    图 17  单频沉积层吸收系数反演结果

    Fig. 17.  Inversion results of sedimentary layer absorption coefficient under single frequency.

    图 18  1/4振荡周期频率下沉积层吸收系数和基底声速的二维反演结果

    Fig. 18.  Two-dimensional inversion results of absorption coefficient of sedimentary layer and sound speed of substrate at 1/4 oscillation period frequency.

    图 19  半波层频率下沉积层吸收系数和基底声速的二维反演结果

    Fig. 19.  Two-dimensional inversion results of absorption coefficient of sedimentary layer and sound speed of substrate at half-wave layer frequency.

    图 20  声源深度200 m, 接收深度97 m, 中心频率1 kHz时的传播损失

    Fig. 20.  Transmission loss at source depth of 200 m, receiving depth of 97 m and center frequency of 1 kHz.

    图 21  声源深度200 m, 接收深度97 m, 中心频率800 Hz时的传播损失

    Fig. 21.  Transmission loss at source depth of 200 m, receiving depth of 97 m and center frequency of 800 Hz.

    图 22  声源深度200 m, 接收深度598 m, 中心频率1.2 kHz时的传播损失

    Fig. 22.  Transmission loss at source depth of 200 m, receiving depth of 598 m and center frequency of 1.2 kHz.

    图 23  不同接收深度下前180 km传播损失均方根误差

    Fig. 23.  RMSE of transmission loss of 180 km at different reception depths.

    图 24  不同接收深度下前100 km传播损失均方根误差

    Fig. 24.  RMSE of transmission loss of 100 km at different reception depths.

    表 1  海底反射系数仿真参数

    Table 1.  Simulation parameters of seabed reflection coefficient.

    参数$ {c_{\text{s}}} $/(m·s–1)$ {\rho _{\text{s}}} $/(g·cm–3)$ {d_{}} $/m$ {\alpha _{\text{s}}} $/(dB·λ–1)$ {c_{\text{b}}} $/(m·s–1)$ {\rho _{\text{b}}} $/(g·cm–3)$ {\alpha _{\text{b}}} $/(dB·λ–1)
    数值16001.5200—1.018002.01.0
    下载: 导出CSV

    表 2  本文方法反演结果

    Table 2.  Inversion results obtained by using the method in this paper.

    反演参数参数穷举空间反演结果
    沉积层声速/(m·s–1)1450 —18001570.6
    沉积层密度/(g·cm–3)1.61
    沉积层厚度/m0—502.40
    沉积层吸收系数/(dB·λ–1)0—1.00.18
    基底声速/(m·s–1)1700 —22001809.5
    基底密度/(g·cm–3)2.06
    基底吸收系数/(dB·λ–1)1.0
    下载: 导出CSV

    表 3  Hamilton沉积分类参数

    Table 3.  Hamilton sedimentary classification parameters.

    沉积物类型声速
    /(m·s–1)
    密度
    /(g·cm–3)
    衰减系数
    /(dB·m–1·kHz–1)
    粗砂18362.0340.479
    细砂17531.9570.510
    极细砂16971.8660.673
    粉砂质砂16681.8060.692
    砂质粉砂16641.7870.756
    粉砂16231.7670.673
    砂-粉砂-粘土15791.5900.113
    粘土质粉砂15491.4880.095
    粉砂质粘土15201.4210.078
    下载: 导出CSV
  • [1]

    杨坤德, 马远良 2009 物理学报 58 1798Google Scholar

    Yang K, Ma Y L 2009 Acta Phys. Sin. 58 1798Google Scholar

    [2]

    黎雪刚, 杨坤德, 张同伟, 等 2009 物理学报 58 7741Google Scholar

    Li X G, Yang K D, Zhang T W, et al. 2009 Acta Phys. Sin. 58 7741Google Scholar

    [3]

    周天, 李海森, 朱建军, 等 2014 物理学报 63 084302Google Scholar

    Zhou T, Li H S, Zhu J J, et al. 2014 Acta Phys. Sin. 63 084302Google Scholar

    [4]

    李赫, 郭新毅, 马力 2019 物理学报 63 214303Google Scholar

    Li H, Guo X Y, Ma L 2019 Acta Phys. Sin. 63 214303Google Scholar

    [5]

    Belcourt J, Holland C W, Dosso S E, et al. 2020 IEEE J. Oceanic Eng. 45 69Google Scholar

    [6]

    陈勃, 赵梅, 胡长青, Zygmunt Klusek 2018 声学学报 43 298Google Scholar

    Chen B, Zhao M, Hu C Q, Zygmunt K 2018 Acta Acoustica 43 298Google Scholar

    [7]

    Chiu L, Chang A, Chen H H, et al. 2020 Cont. Shelf Res. 201 104Google Scholar

    [8]

    徐丽亚, 杨坤德 2020 声学技术 39 1Google Scholar

    Xu L Y, Yang K D 2020 Technical Acoustics 39 1Google Scholar

    [9]

    Quijano J E, Dosso S E, Dettmer J, et al. 2013 J. Acoust. Soc. Am. 133 EL47Google Scholar

    [10]

    Qin J X, Katsnelson B, Godin O, Li Z L 2017 Chin. Phys. Lett. 34 094301Google Scholar

    [11]

    江鹏飞, 林建恒, 孙军平, 等 2019 物理学报 66 014306Google Scholar

    Jiang P G, Lin J H, Sun J P, et al. 2019 Acta Phys. Sin. 66 014306Google Scholar

    [12]

    薄连坤, 罗来源, 熊瑾煜 2018 声学学报 43 6Google Scholar

    Bao L K, Luo L Y, Xiong J Y 2018 Acta Acoustica 43 6Google Scholar

    [13]

    Barclay D R, Bevans D A, Buckingham M J 2019 IEEE J. Oceanic Eng. 99 1Google Scholar

    [14]

    李风华, 张仁和 2000 声学学报 4 297Google Scholar

    Li F H, Zhang R H 2000 Acta Acoustica 4 297Google Scholar

    [15]

    张学磊, 李整林, 黄晓砥 2009 声学学报 1 54Google Scholar

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 1 54Google Scholar

    [16]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 70Google Scholar

    [17]

    李梦竹, 李整林, 周纪浔 2019 物理学报 68 094301Google Scholar

    Li M Z, Li Z L, Zhou J X 2019 Acta Phys. Sin. 68 094301Google Scholar

    [18]

    李梦竹, 李整林, 李倩倩 2019 声学学报 44 321Google Scholar

    Li M Z, Li Z L, Li Q Q 2019 Acta Acoustica 44 321Google Scholar

    [19]

    Fialkowski L T, Lingevitch J F, Perkins J S, et al. 2003 IEEE J. Oceanic Eng. 28 370Google Scholar

    [20]

    Jiang Y M, Chapman N R, Badiey M 2007 J. Acoust. Soc. Am. 121 1879Google Scholar

    [21]

    布列霍夫斯基赫 L 著 (杨训仁 译) 1985 分层介质中的波 (北京: 科学出版社) 第10—16页

    Л. М. Бреховских L (translated by Yang X R) 1985 Waves In Layered Medium (Beijing: Science Press) pp10–16 (in Chinese)

    [22]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891Google Scholar

    [23]

    布列霍夫斯基赫 L著 (中国海洋大学, 中国科学院声学研究所 译) 1983 海洋声学 (北京: 科学出版社) 第309—314页

    Л. М. Бреховских L (translated by OUC & IACAS) 1983 Ocean Acoustic (Beijing: Science Press) pp309–314 (in Chinese)

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [3] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [4] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法. 物理学报, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [5] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法. 物理学报, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [6] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [7] 刘航, 于永吉, 王宇恒, 刘贺言, 李渌洁, 金光勇. 基于含时分步积分算法反演单体MgO:APLN多光参量振荡能量场. 物理学报, 2019, 68(24): 244202. doi: 10.7498/aps.68.20190843
    [8] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [9] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [10] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [11] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [12] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线. 物理学报, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [13] 韩月琪, 钟中, 王云峰, 杜华栋. 梯度计算的集合变分方案及其在大气Ekman层湍流系数反演中的应用. 物理学报, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [14] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法. 物理学报, 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [15] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [16] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [17] 顾培夫, 陈海星, 郑臻荣, 刘 旭. 弱吸收多层薄膜消光系数的反演. 物理学报, 2005, 54(8): 3722-3725. doi: 10.7498/aps.54.3722
    [18] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [19] 罗正明, 李泰华. 轻离子反射系数的标度公式. 物理学报, 1994, 43(1): 118-123. doi: 10.7498/aps.43.118
    [20] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
计量
  • 文章访问数:  5382
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2022-02-23
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-06-05

/

返回文章
返回