搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟

马聪 刘斌 梁宏

引用本文:
Citation:

耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟

马聪, 刘斌, 梁宏

Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension

Ma Cong, Liu Bin, Liang Hong
PDF
HTML
导出引用
  • 采用介观格子Boltzmann方法模拟界面张力作用下三维流体界面的Rayleigh-Taylor (RT)不稳定性的增长过程, 主要分析表面张力对流体界面动力学行为及尖钉和气泡后期增长的影响机制. 首先发现三维 RT不稳定性的发生存在临界表面张力($\sigma_{\rm{c}}$), 其值随着流体Atwood数的增大而增大, 且数值预测值与理论分析结果${\sigma_{\rm{c}}}= {{({{\rho_{\rm{h}}}-{\rho_{\rm{l}}}})g}}/{{{k^2}}}$一致. 另外, 随着表面张力的增大, 不稳定性演化过程中界面卷吸程度和结构复杂性逐渐减弱, 系统中界面破裂形成离散液滴的数目也显著减少. 相界面的后期动力学行为也从非对称发展转向始终保持关于中轴线对称. 尖钉与气泡振幅在表面张力较小时对其变化不显著, 当表面张力增大到一定值后, 可以有效地抑制尖钉与气泡振幅的增长. 进一步发现, 高雷诺数三维RT不稳定性在不同表面张力下均经历4个不同的发展阶段: 线性阶段、饱和速度阶段、重加速和混沌混合阶段. 尖钉与气泡在饱和速度阶段以近似恒定的速度增长, 其渐进速度的值与修正的势流理论模型结果一致. 受非线性Kelvin-Helmholtz旋涡的剪切作用, 尖钉与气泡随后的增长被加速, 导致在重加速阶段的演化速度超过势流模型的解析解. 重加速阶段不能持续发展下去, 尖钉与气泡在不稳定性后期的增长速度会随时间上下波动, 这表明不稳定性的演化进入了混沌混合阶段. 通过数值分析, 证实了三维RT不稳定性在后期的混沌混合阶段具有二次增长的规律, 并且尖钉与气泡增长率总体上随着表面张力的增大而逐渐减少.
    In this paper, the development of three-dimensional fluid interfacial Rayleigh-Taylor (RT) instability coupled with the surface tension was numerically studied using the mesoscopic lattice Boltzmann method. We mainly analyzed the influence of surface tension on fluid interfacial dynamics and spike/bubble late-time growth. The numerical experiments show that there exists the critical surface tension ($\sigma_{\rm{c}}$) in the three-dimensional RT instability, above which the RT phenomenon does not appear and below which it would take place. It is found that the critical surface tension increases with the fluid Atwood number and the corresponding numerical predictions show good agreements with those of the theoretical analysis ${\sigma_{\rm{c}}}= {{({{\rho_{\rm{h}}}-{\rho_{\rm{l}}}})g}}/{{{k^2}}}$. In addition, we can find that increasing surface tension reduces the roll-up of the interface and the complexity of interfacial structure, also preventing the breakup of the interface into the individual droplets. The late-time dynamics of phase interface change from the asymmetric development to the symmetry with respect to the middle axis. When the surface tension is sufficiently low, the spike and bubble amplitudes almost no longer change with it, and further increasing the surface tension can slow down the growth of the spike and bubble amplitudes. Furthermore, we can observe that the development of the high-Reynolds-number RT instability under different surface tensions can also be divided into four distinct stages, including the linear growth, saturated velocity growth, reacceleration, and chaotic mixing. The spike and bubble grow with approximately constant velocities at the saturated stage and their asymptotic values are consistent with those of the modified potential flow theory. In the following, the spike and bubble driven by the increasing Kelvin-Helmholtz vortices are accelerated such that their evolutional velocities exceed the solutions of the potential flow model at the reacceleration stage. The reacceleration stage cannot last infinitely and the spike and bubble velocities at the late time fluctuate with time, implying that the growth of the RT instability enters into the chaotic mixing stage. By numerical analysis, we demonstrate that the three-dimensional RT instability at the chaotic mixing stage has a quadratic growth and also report that the spike and bubble growth rates decrease with the surface tension in general.
      通信作者: 梁宏, lianghongstefanie@163.com
    • 基金项目: 国家自然科学基金 (批准号: 11972142) 资助的课题.
      Corresponding author: Liang Hong, lianghongstefanie@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11972142).
    [1]

    Zhou Y 2017 Phys. Rep. 720

    [2]

    Boffetta G, Mazzino A 2017 Annu. Rev. Fluid Mech. 49 119Google Scholar

    [3]

    Rayleigh L 1883 Proc. London Math. Soc. 14 170

    [4]

    Taylor G I 1950 Proc. R. Soc. London Ser. A 201 192

    [5]

    Lewis D J 1950 Proc. R. Soc. London Ser. A 202 81Google Scholar

    [6]

    Waddell J T, Niederhaus C E, Jacobs J W 2001 Phys. Fluids 13 1263Google Scholar

    [7]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502Google Scholar

    [8]

    Sohn S I 2009 Phys. Rev. E 80 055302(RGoogle Scholar

    [9]

    Glimm J, Li X L, Lin A D 2002 Acta Math. Appl. Sin. 18 1

    [10]

    Wilkinson J P, Jacobs J W 2007 Phys. Fluids 19 124102Google Scholar

    [11]

    Ramaprabhu P, Dimonte G, Young Y N, Calder A C, Fryxell B 2006 Phys. Rev. E 74 066308Google Scholar

    [12]

    Bian X, Aluie H, Zhao D X, Zhang H S, Livescu D 2020 Physica D 403 132250Google Scholar

    [13]

    Ramaprabhu P, Dimonte G, Woodward P, Fryer C, Rochefeller G, Muthuraman K, Lin P H, Jayaraj J 2012 Phys. Fluids 24 074107Google Scholar

    [14]

    Wei T, Livescu D 2012 Phys. Rev. E 86 046405Google Scholar

    [15]

    Hu Z X, Zhang Y S, Tian B L, He Z W, Li L 2019 Phys. Fluids 31 104108Google Scholar

    [16]

    李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标 2018 物理学报 67 080501Google Scholar

    Li D M, Lai H L, Xu A G, Zhang G C, Lin C D, Gan Y B 2018 Acta Phys. Sin. 67 080501Google Scholar

    [17]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033113Google Scholar

    [18]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [19]

    Liang H, Xia Z H, Huang H W 2021 Phys. Fluids 33 082103Google Scholar

    [20]

    Daly B J 1969 Phys. Fluids 12 1340Google Scholar

    [21]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [22]

    Young Y N, Ham F E 2006 J. Turbul. 7 71Google Scholar

    [23]

    Matsuoka C 2009 Phys. Fluids 21 092107Google Scholar

    [24]

    Sohn S I 2009 Physical Review E 80 055302(R

    [25]

    夏同军, 董永强, 曹义刚 2013 物理学报 62 214702Google Scholar

    Xia T J, Dong Y Q, Cao Y G 2013 Acta. Phys. Sin. 62 214702Google Scholar

    [26]

    黄皓伟, 梁宏, 徐江荣 2021 物理学报 70 114701Google Scholar

    Huang H W, Liang H, Xu J R 2021 Acta Phys. Sin. 70 114701Google Scholar

    [27]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific Publishing Company) pp239–284

    [28]

    Wang H L, Yuan X L, Liang H, Chai Z H, Shi B C 2019 Capillarity 2 33Google Scholar

    [29]

    Liang H, Hu X L, Huang X F, Xu J R 2019 Phys. Fluids 31 112104Google Scholar

    [30]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [31]

    Liang H, Shi B C, Chai Z H 2017 Comput. Math. Appl. 73 1524Google Scholar

    [32]

    d’Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [33]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [34]

    Abarzhi S I, Gorobets A, Sreenivasan K R 2005 Phys. Fluids 17 081705Google Scholar

    [35]

    Olson D H, Jacobs J W 2009 Phys. Fluids 21 034103Google Scholar

  • 图 1  三维单模RT不稳定性问题的示意图

    Fig. 1.  Schematic of three-dimensional single-mode RT instability problem

    图 2  不同Atwood数下三维RT不稳定性的临界表面张力

    Fig. 2.  Critical surface tensions of three-dimensional RT instability at various Atwood numbers

    图 3  表面张力对高雷诺数三维单模RT不稳定性相界面演化的影响, $ Re = 5000 $, $ A_t = 0.1 $ (a) $ \sigma = 1\times10^{-6} $; (b) $\sigma = 1\times $$ 10^{ - 5}$; (c) $ \sigma = 2\times10^{ - 4} $; (d) $ \sigma = 5\times10^{ - 4} $

    Fig. 3.  Effect of the surface tension on the evolution of phase interface in three-dimensional single-mode RT instability with high Reynolds number, $ Re = 5000 $, $ A_t = 0.1 $: (a) $ \sigma = 1\times10^{-6} $; (b) $ \sigma = 1\times10^{ - 5} $; (c) $ \sigma = 2\times10^{ - 4} $; (d) $ \sigma = 5\times10^{ - 4} $.

    图 4  表面张力对高雷诺数三维单模RT不稳定性的对角平面(x = y平面)的相界面演化的影响, $ Re = 5000 $, $ A_t = 0.1 $ (a) $\sigma = $$ 1\times10^{ - 6}$; (b) $ \sigma = 1\times10^{ - 5} $; (c) $ \sigma = 2\times10^{ - 4} $; (d) $ \sigma = 5\times10^{ - 4} $

    Fig. 4.  Effect of the surface tension on the evolution of phase interface in the diagonal plane of three-dimensional single-mode RT instability with high Reynolds number, $ Re = 5000 $, $ A_t = 0.1 $: (a) $ \sigma = 1\times10^{ - 6} $; (b) $ \sigma = 1\times10^{ - 5} $; (c) $ \sigma = 2\times10^{ - 4} $; (d) $\sigma = $$ 5\times10^{ - 4}$.

    图 5  表面张力对随时间演化的尖钉(左)和气泡(右)振幅的影响

    Fig. 5.  Influence of surface tension on the time evolutions of spike (left) and bubble (right) amplitudes.

    图 6  表面张力对随时间演化的尖钉(左)和气泡(右)增长速度的影响. 黑色和蓝色虚线分别表示修正的势能模型所预测尖钉与气泡渐进速度在$ \sigma = 1\times10^{ - 5} $ $ \sigma = 5\times10^{ - 4} $时的解析解

    Fig. 6.  Influence of surface tension on the time evolutions of spike (left) and bubble (right) growth velocities. The black and blue dotted lines represent the analytical solutions of the spike and bubble asymptotic velocities from the modified potential flow model at $ \sigma = 1\times10^{ - 5} $ and $ \sigma = 5\times10^{ - 4} $.

    图 7  不同界面张力下三维RT不稳定性中尖钉(左)与气泡(右)振幅的开方$ \sqrt{h_{{\rm{s, b}}}} $与演化时间$ \sqrt{gA_t}t $的关系曲线, 实线表示在后期混沌混合阶段的线性拟合结果

    Fig. 7.  Relations between the square roots of the spike and bubble amplitudes $ \sqrt{h_{{\rm{s, b}}}} $ and the time $ \sqrt{g{A_t}}t $ in the three-dimensional RT instability with different surface tensions. The solid lines represent the linear fitting results at the late-time chaotic mixing stage.

  • [1]

    Zhou Y 2017 Phys. Rep. 720

    [2]

    Boffetta G, Mazzino A 2017 Annu. Rev. Fluid Mech. 49 119Google Scholar

    [3]

    Rayleigh L 1883 Proc. London Math. Soc. 14 170

    [4]

    Taylor G I 1950 Proc. R. Soc. London Ser. A 201 192

    [5]

    Lewis D J 1950 Proc. R. Soc. London Ser. A 202 81Google Scholar

    [6]

    Waddell J T, Niederhaus C E, Jacobs J W 2001 Phys. Fluids 13 1263Google Scholar

    [7]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502Google Scholar

    [8]

    Sohn S I 2009 Phys. Rev. E 80 055302(RGoogle Scholar

    [9]

    Glimm J, Li X L, Lin A D 2002 Acta Math. Appl. Sin. 18 1

    [10]

    Wilkinson J P, Jacobs J W 2007 Phys. Fluids 19 124102Google Scholar

    [11]

    Ramaprabhu P, Dimonte G, Young Y N, Calder A C, Fryxell B 2006 Phys. Rev. E 74 066308Google Scholar

    [12]

    Bian X, Aluie H, Zhao D X, Zhang H S, Livescu D 2020 Physica D 403 132250Google Scholar

    [13]

    Ramaprabhu P, Dimonte G, Woodward P, Fryer C, Rochefeller G, Muthuraman K, Lin P H, Jayaraj J 2012 Phys. Fluids 24 074107Google Scholar

    [14]

    Wei T, Livescu D 2012 Phys. Rev. E 86 046405Google Scholar

    [15]

    Hu Z X, Zhang Y S, Tian B L, He Z W, Li L 2019 Phys. Fluids 31 104108Google Scholar

    [16]

    李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标 2018 物理学报 67 080501Google Scholar

    Li D M, Lai H L, Xu A G, Zhang G C, Lin C D, Gan Y B 2018 Acta Phys. Sin. 67 080501Google Scholar

    [17]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033113Google Scholar

    [18]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [19]

    Liang H, Xia Z H, Huang H W 2021 Phys. Fluids 33 082103Google Scholar

    [20]

    Daly B J 1969 Phys. Fluids 12 1340Google Scholar

    [21]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [22]

    Young Y N, Ham F E 2006 J. Turbul. 7 71Google Scholar

    [23]

    Matsuoka C 2009 Phys. Fluids 21 092107Google Scholar

    [24]

    Sohn S I 2009 Physical Review E 80 055302(R

    [25]

    夏同军, 董永强, 曹义刚 2013 物理学报 62 214702Google Scholar

    Xia T J, Dong Y Q, Cao Y G 2013 Acta. Phys. Sin. 62 214702Google Scholar

    [26]

    黄皓伟, 梁宏, 徐江荣 2021 物理学报 70 114701Google Scholar

    Huang H W, Liang H, Xu J R 2021 Acta Phys. Sin. 70 114701Google Scholar

    [27]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific Publishing Company) pp239–284

    [28]

    Wang H L, Yuan X L, Liang H, Chai Z H, Shi B C 2019 Capillarity 2 33Google Scholar

    [29]

    Liang H, Hu X L, Huang X F, Xu J R 2019 Phys. Fluids 31 112104Google Scholar

    [30]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [31]

    Liang H, Shi B C, Chai Z H 2017 Comput. Math. Appl. 73 1524Google Scholar

    [32]

    d’Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [33]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [34]

    Abarzhi S I, Gorobets A, Sreenivasan K R 2005 Phys. Fluids 17 081705Google Scholar

    [35]

    Olson D H, Jacobs J W 2009 Phys. Fluids 21 034103Google Scholar

  • [1] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [2] 孙伟, 吕冲, 雷柱, 仲佳勇. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究. 物理学报, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [3] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究. 物理学报, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [5] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [6] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [7] 赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型. 物理学报, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [8] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟. 物理学报, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [9] 李俊涛, 孙宇涛, 胡晓棉, 任玉新. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响. 物理学报, 2017, 66(23): 235201. doi: 10.7498/aps.66.235201
    [10] 李俊涛, 孙宇涛, 潘建华, 任玉新. 冲击加载下V形界面的失稳与湍流混合. 物理学报, 2016, 65(24): 245202. doi: 10.7498/aps.65.245202
    [11] 袁永腾, 王立峰, 涂绍勇, 吴俊峰, 曹柱荣, 詹夏宇, 叶文华, 刘慎业, 江少恩, 丁永坤, 缪文勇. 掺杂对CH样品Rayleigh-Taylor不稳定性增长的影响. 物理学报, 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [12] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [15] 夏同军, 董永强, 曹义刚. 界面张力对Rayleigh-Taylor不稳定性的影响. 物理学报, 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [16] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 杜诚, 徐敏义, 米建春. 雷诺数对圆形渐缩喷嘴湍流射流的影响. 物理学报, 2010, 59(9): 6331-6338. doi: 10.7498/aps.59.6331
    [19] 米建春, 冯宝平, Deo Ravinesh C, Nathan Graham J. 出口雷诺数对平面射流自保持性的影响. 物理学报, 2009, 58(11): 7756-7764. doi: 10.7498/aps.58.7756
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  3758
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-06
  • 修回日期:  2021-11-26
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-02-20

/

返回文章
返回